Microwave Subsystem Controller (USC) Design Document

Microwave Subsystem Controller (USC)
Software Design Document

Table of Contents
5PART A SOFTWARE REQUIREMENTS

6SECTION 1 Software Functions

6Overview

6Monitoring

7Configuring

9SECTION 2 OPERATIONAL SCENARIOS

9Auto Configuration

9Default Configuration

10User Configuration

10Individual Switch Setting

12PART B SOFTWARE ARCHITECTURAL DESIGN

13SECTION 3 Overview

14SECTION 4 TASK RELATIONSHIPS AND CONTROL FLOW

15SECTION 5 TASK INTERFACES

15EX - MC: Interface between USC Executive (USC_EX) and USC Monitor and Control (USC_MC) task

15Protocol Messages

16EX/MC - NI: Interface between USC Executive (USC_EX), USC Monitor and Control (USC_MC) and USC NMC Interface (USC_NI) tasks

16EX/MC – TM: Interface between USC Executive (USC_EX), USC Monitor and Control (USC_MC) and USC Task Monitor (USC_TM) tasks

16NI – TERM: Interface between USC NMC Interface (USC_NI) and USC Terminal (USC_TERM) tasks

17MC – DIAG: Interface between USC Monitor and Control (US_MC) and USC Diagnostic (USC_DIAG) tasks

17Protocol Messages

19SECTION 6 SEQUENCES OF INTER-TASK MESSAGE TRANSFERS

19Initialization State: Inter-task messages and sequences during initialization

20Idle State: Inter-task messages and sequences while USC is in idle state

22Auto Configuration: Inter-task messages and sequences when USC receives CCN

25Default Configuration: Inter-task messages and sequences when an operator issues CNF with default configuration directive

25User Configuration: Inter-task messages and sequences when an operator issues CNF <user configuration> directive

26Individual Switch Setting: Inter-task messages and sequences when an operator issues MOD directive

26Support Data Handling: Inter-task messages and sequences when USC receives support data from SPPA

27SECTION 7 Error Handling

27I/O Failures

27Switch Movement Failure

27CCG Component Failure

28Support Data Error

28Directive Parameter Failure

28CCN error

28Unexpected Software Failure

29PART C SOFTWARE DETAILED DESIGN

30SECTION 8 Definitions

31SECTION 9 Framework

32SECTION 10 Libraries

32Microwave Subsystem Controller Libraries

33Uplink Common Software Libraries

33SFOC TC&DM

33Monitor & Control Infrastructure Services

33Uniform Display Services

34SECTION 11 USC Internal Site Specific Tables

34Resource File

39Device File

45Display Files

46Critical Path File

47Simulation File for OptoMux Boards

48SECTION 12 USC Configuration Tables (created by operators)

49SECTION 13 USC Support Data Tables (kept at NSS)

50SECTION 14 USC Monitor & Control (USC_MC) task

51Executive Proxy (Ex) Object

52Hardware Proxy (Hw) Object

52Monitor (Mon) Object

53Switch Manager (Swt) Object

54SECTION 15 USC Executive (USC_EX) task

54NMC Proxy (Nmc) Object

57Monitor & Control Proxy (Mc) Object

58Configuration Manager (Cnf) Object

59Support Data Handler (Sup) Object

59User Configuration (Usr) Object

60Status Manager (Sts) Object

61SECTION 16 USC Network Monitor & Control (NMC) Interface (USC_NI) task

61USC NMC Interface (usc_ni) Object

63SECTION 17 USC Task Monitor (USC_TM) task

63USC Task Monitor (usc_tm) Object

64SECTION 18 USC Maintenance Terminal (USC_TERM) task

64USC Term Main (usc_term) Object

65USC Subsystem, Status and Diagnostics panels (ct_panels) Object

66USC Monitor Data Dialog Box (ct_monmenu) Object

66USC File Path Sub-display (ct_pathsub) Object

66USC Simulation dialog box (ct_simmenu) Object

67USC Log Control dialog box (ct_logmenu) Object

68SECTION 19 USC Diagnostic Terminal (USC_DIAG) task

68Graphical User Interface

70APPENDICIES

71APPENDIX A RESOURCE FILE EXMAPLE

72APPENDIX B DEVICE FILE: DEVICE OBJECT EXMAPLE

79APPENDIX C DEVICE FILE: LINK OBJECT EXMAPLE

80APPENDIX D DEVICE FILE: DISPLAY OBJECT EXAMPLE

81APPENDIX E DISPLAY FILE EXMAPLE

84APPENDIX F CRITICAL PATH FILE EXAMPLE

85APPENDIX G SIMULATION FILE EXAMPLE

86APPENDIX H USER CONFIGURATION FILE EXMAPLE

87APPENDIX I SUPPORT DATA FILE EXAMPLE

88APPENDIX J libUsc: Man page

90APPENDIX K UscApp: Man page

93APPENDIX L UscDevice: Man page

108APPENDIX M UscHw: Man page

112APPENDIX N UscPvl: Man page

Change Log

	Date
	Author
	Description

	01/09/2002
	B. Tehrani
	Initial creation.

	01/11/2002
	B. Tehrani
L. Manalo
	Changed based on Operability Feedbacks

	01/14/2002
	B. Tehrani
	Added NI, TEMP, and DIAG interface descriptions, and

Added CM design general section.

	01/18/2002
	B. Tehrani
	Added USC_MC detailed design section, general and interfaces.

	01/29/2002
	B. Tehrani
	Added USC_DIAG detailed design general section.

	02/15/2002
	B. Tehrani
	Added USC Internal Site Specific Tables.

	03/19/2002
	B. Tehrani,
L. Manalo
	Updated Entire document according to peer review material.

	04/20/2002
	B. Tehrani
	Updated MC task detail design

	04/25/2002
	B. Tehrani
L. Manalo
	Updated site device tables

	05/10/2002
	B. Tehrani
	Updated Sequence of inter-task communications

	06/20/2002
	B. Tehrani
	Added USC_EX detailed design section

	07/05/2002
	B. Tehrani
	Updated USC_MC VC Messages according to prototype

	07/12/2002
	B. Tehrani
	Added USC_EX modules and descriptions

	08/10/2002
	L. Manalo
	Updated USC table specifications including internal, user and auto configuration tables

	08/20/2002
	L. Manalo
	Added USC_MC, USC_TM, and USC_NI design sections

	08/26/2002
	L. Manalo
	Updated event notice texts to match SOM and interface documents

	08/30/2002
	B. Tehrani
	Added section1 (software functions and updated design details in both architectural and detailed design sections)

	09/10/2002
	B. Tehrani
	Added definition and framework section.
Added Library man pages to this document.

	09/17/2002
	B. Tehrani
	Updated Entire document and fixed all page number references.

	10/29/2002
	B. Tehrani
	Added requirement compliance matrix

PART A
SOFTWARE REQUIREMENTS

SECTION 1
 Software Functions

Overview

In general Configuration Control Group (CCG) is responsible to monitor Microwave subsystem (UWV) and perform necessary configuration to support DSN operation during pre-cal, track, post-cal, and maintenance periods. The Microwave Subsystem Controller (USC) is the software controller portion of Configuration Control Group (CCG), which monitors CCG hardware equipment and provides configuration information to Network Monitor and Control (NMC) operator, Complex Supervisor (CS), and Downlink Channel Controller (DCC). In addition, the Microwave Subsystem Controller (USC) manages all microwave switch configurations either automatically in support of pre-cal using the support data made available by Network Support Subsystem (NSS), or manually as requested by NMC operator through Operator Directive (OD).

Monitoring

The Microwave Subsystem Controller (USC) continuously - twice a second- reads and monitors the status of all microwave interlocks, microwave equipment indications such as antenna mirrors and sub-reflector, Low Noise Amplifiers (LNA), and microwave signal path switches. The information gathered during each monitoring interval will be processed and used to achieve the following:

· To inform NMC operator

All data read from CCG hardware including all interlocks, indications and microwave switches will be published as monitor data to be used by Microwave Subsystem Controller Displays (USCD) for displaying on NMC workstation and/or Microwave Controller Assembly (UCA) terminal. In addition, the USC software processes the direct information and generates necessary data to show the status of overall subsystem, the status of each assembly, diagnostic messages, the overall microwave configuration, the summary of interlocks, the status of transmitter beam inhibit, the usability of each switch and transmitter in the uplink path, and the signal path associated to each horn, signal injection sources and receiver outputs. For the details of USCD displays refer to USC Pseudo SOM (PSOM).

· To provide microwave configuration information to Downlink Channel Controller (DCC) software

The USC processes microwave switch positions – twice a second – and determines the actual signal settings at each UWV output to the receiver and publishes monitor data for DCC on change and/or every time NMC/CS connection restores. These settings include source of the signal (Horn, Ambient, etc), band (S, X, L, etc), polarity (LCP/RCP), diplex mode (diplex, listen-only, radar, etc), LNA number, and signal injection settings.

NOTE: The signal settings that are provided to DCC does not indicate the presence of any microwave signal, instead they represent the possible signal configuration. It is the responsibility of receiver software and/or hardware to examine the presence of any microwave signal. For the detail of USC to DCC interface see 820-16 - 0328-DCC-USC interface specification document.
· To determine switch position violations for uplink path (Critical Path)

Every time the USC reads switch positions from CCG hardware equipment, it cross-references the switch positions with each transmitter critical path file to determine possible switch position validations. The data gathered from this function will be used to validate configuration change requests from operator and to determine required changes during auto configuration phase.

· To provide information to TDN and NMC Automation

In addition to all above, the USC provides a set of information to be used by automation analyst. These data includes the following categories:

1- Program Identification and Overall Status (Same as those to support MON-2 interface with NMC)

2- Downlink signal configuration at each receiver output (same as those provided to DCC)

3- Uplink signal configuration at each antenna horn or uplink signal load. (band, transmitter name, polarity, and output)

4- A set of event notices showing Microwave Subsystem activities.

For the list of all monitor data and event notices provided for Automation Subsystem refer to 820-016 - 0349-AA-USC interface specification document.

Configuring

The Microwave Subsystem Controller (USC) performs configuration automatically during pre-cal and when requested by NMC operator. The USC achieves required configuration in four different methods as described below:

· Auto Configuration

The USC receives spacecraft specific configuration requirements for both uplink and downlink tracks in the form of support data files from Network Support Subsystem (NSS). During pre-cal and when the Microwave Subsystem is assigned to a network link, the USC reads the previously saved support data file(s) for the spacecraft(s) being tracked and depending on the DSN site specifications, it generates a list of microwave switches that need to be changed. If the requested configuration is achievable, the USC will set all the switches accordingly, otherwise the NMC operator will be notified for manual configuration.

USC performs auto-configuration if one of the following conditions are valid:

1- When link is built, USC connection state is Unassigned, USC receives a valid Assigned CCN, Spacecraft Number(s) or Pass number(s) in the link are different than the one from previous CCN (stored in checksum), and there exist a support-data file for at least one of the spacecrafts in the link

2- When requested by operator and required support data files exist.

· Default Configuration

The USC, also, can accept default configuration request from operator at any time. Each default configuration requests can contain a full or partial signal setting for one or several signal path in Microwave subsystem. When USC receives default configuration requests from NMC operator, it determines the list of switches that need to be changed and perfumes necessary operation to achieve requested signal setting(s).

· User Configuration

The users of USC software (operators, maintenance personnel, etc) can create and/or save specific microwave configuration file for each antenna site under a given name. The files created for user configuration contains a list of switches their position and can be used to retrieve and/or restore microwave switch configuration at later time.

· Individual Switch Setting

In addition to all above configuration methods, an operator can also request to move an individual switch to desired position for maintenance or in support of track. When the USC receives the request either from NMC or UCA terminal, it will attempt to move the switch and reports the result.

SECTION 2
 OPERATIONAL SCENARIOS

There are four different methods of operation supported by USC to configure Microwave switches. These methods are Auto Configuration, Default Configuration, User Configuration, and Individual Switch Setting.

Auto Configuration

1- Complex Supervisor (CS) Builds the Link with USC

2- USC Receives CCN

3- USC Gets list of spacecrafts and Uplink Active spacecraft from NMC

4- USC finds appropriate support data files

a- Support data files are spacecraft/antenna specific

b- Operator will be notified of the list of support data files that are used.

c- If no support data exist, NMC Operator will be notified by EN:

 "Auto configuration ignored. No support data found for <scn >"

5- USC logically combines all support data files per Band

a- Downlink configurations will be added for common result

b- Only the Uplink configuration of Uplink-Active spacecraft will be used

c- If conflict exists, NMC Operator will be notified by EN

 "Auto configuration ignored. MSPA conflict between <scn> and <scn>.”

6- USC moves a set of UWV switches to obtain requested configuration for default outputs

a- USC notifies Operators that Auto Configuration has completed or Failed by EN: “Auto configuration successfully performed for <scn>.” or “Auto Configuration failed. Use CNF if required.”
7- USC compares the switch setting to validate them against transmitter critical path files and change additional switches if required
8- If beam is ON, USC compares the switch setting to validate them against transmitter critical path files

· If critical path violation exists, USC continues the configuration. When finished, the directive will be rejected with “REJECTED. Switches in Critical Path Cannot Move. xxx” where xxx is the name of the switch.
9- If one of the spacecraft changes during the track, NMC operator will be notified to reconfigure UWV by CNF directive.

a- USC will not automatically re-configure

Default Configuration

1- NMC Operator Issues CNF directive

2- USC parses and validates CNF directive

3- If validation fails, NMC operator will be notified by DR: "REJECTED. Usage"

4- If <user configuration> parameter is used, USC start user config sequence. (See User Config Sequence)

5- USC validates configuration against antenna site

6- If configuration is not possible for the specific antenna, NMC Operator will be notified by DR:

a. "REJECTED. <xxx> is not valid for DSSxx" or

b. "REJECTED. <xxx> can not be used with <xxx> in DSSxx"

7- USC moves a set of UWV switches to obtain requested configuration for selected outputs (Sends PROCESSING if required)

8- If uplink configuration, USC compares the switch setting to validate them against transmitter critical path files and change additional switches if required

9- If beam is ON, USC compares the switch setting to validate them against transmitter critical path files

a. If critical path violation exists, USC stops the configuration and rejects the directive by “REJECTED. Switches in Critical Path Cannot Move. Xxx” where xxx is the name of switch or switches in the list

10- After all switches have been commanded, the USC Notifies Operators that Configuration has completed or Failed by DR:

a. “COMPLETED. xxx” (where xxx is echo of CNF arguments) or

b. “REJECTED. xxx” (where xxx is the reason of failure)

User Configuration

1- NMC Operator Issues CNF directive

2- USC parses and validates CNF directive

3- If validation fails, NMC operator will be notified by DR: "REJECTED. Usage"

4- If <user configuration> parameter is not used, USC will check for default config parameters. (See default Config Sequence)

5- USC compares the switch setting to validate them against transmitter critical path files

a. If critical path violation exists, USC continues the configuration but rejects the directive by “REJECTED. Switches in Critical Path Cannot Move. xxx” where xxx is the name of switch or switches in the list

6- USC moves the set of UWV switches specified in the file to selected position (Sends PROCESSING if required)

7- After all switches have been commanded, the USC Notifies Operators that Configuration has completed or Failed by DR:

a. “COMPLETED. New Configuration = <User Config>” or

b. “REJECTED. xxx (where xxx is the reason of failure)”

Individual Switch Setting

1- CMC Operator issues MOD <switch number> <position>

2- USC verifies that <switch number exist> and <position> is valid

3- If not valid, NMC operator will be notified by DR:

a. "REJECTED. Switch Number <switchNumber> in not valid for DSSxx" or

b. "REJECTED. Position <position> is not valid for x-position switch <SwitchNumber>"

4- USC verifies switch setting against critical paths

a. If critical path violation exists, USC stops the MOD and rejects the directive by “REJECTED. Switch in Critical Path Cannot Move. xxx” where xxx is the name of switch

5- If switch can not change, NMC Operator will be notified by DR:

a. "REJECTED. Cannot move switch <switchNumber>. It is a crital path" or

b. "REJECTED. Cannot move switch <SwitchNumber> while <xxx> is <xxx>." (Like "Beam is ON")

6- USC moves the switch.

7- USC notifies NMC operator that MOD directive is completed by:

a. "COMPLETED. Switch <SwitchNumber> is not at position <position>" or

b. "REJECTED. Failed to move switch <SwitchNumber> to position <position> TIMEOUT ..." or

c. "REJECTED. Failed to move switch <SwitchNumber> to position <position> SWITCH FAILURE ..."

PART B
SOFTWARE ARCHITECTURAL DESIGN

SECTION 3
Overview

Microwave Subsystem Controller (USC) consists of six internal tasks USC Executive (USC_EX), USC Monitor and Control (USC_MC), USC NMC Interface (USC_NI), USC Task Monitor (USC_TM), USC Terminal (USC_TERM), and USC diagnostic terminal (USC_DIAG), and several UDS type display tasks. In general USC_EX task performs all necessary hi-level operations to configure Microwave (UWV) subsystem for uplink and downlink tracks, while USC_MC and USC_NI manage CCG hardware and NMC interfaces. USC_TERM is a graphical tool that can be used to emulate the NMC directly from the USC workstation. It implements the same interface to USC_NI that the actual NMC does. USC_DIAG is also another graphical terminal that can be used to debug hardware interface software, and perform maintenance and diagnostic of CCG hardware. It can run standalone or interface with USC_MC by implementing the exact interface between USC_EX and USC_MC. USC_TM is an ongoing task, which continuously monitors the health of other tasks and performs necessary actions. UDS displays are also separate tasks that can run either on the NMC workstation or the USC controller. These tasks use UDS and MCIS libraries; they connect to NMC MDSServers and create/update graphical user interfaces based on the MON-3/7 standards.

[image: image1.png]Diagram 2-1: USC Architecture
SECTION 4
TASK RELATIONSHIPS AND CONTROL FLOW

During normal operation, only four tasks USC_TM, USC_EX, USC_MC and USC_NI are required to run. USC_MC constantly monitors CCG H/W. It publishes status periodically to NI and sends notification to EX on change. USC_MC also monitors EX interface for incoming messages and moves switches accordingly. USC_EX, on the other hand, constantly monitors MC interface, determines signal path configuration based on switch settings, and publishes configuration monitor data. USC_EX also monitors the NI interface, creates and sends one or several messages to USC_MC for proper switch movement and respond back to the NI interface. In addition to general functionalities, support data handling, CCN handling, and status handling are also the responsibility of USC_EX. USC_NI is the NMC interface, which constantly monitors the SPC network interface by the use of MCIS libraries and forward incoming messages to USC_EX. It also monitors the EX and MC interfaces for monitor data publishing and forward them to the NMC or CS monitor data engine. Handling connections of NMC link, connecting to CSand CE are also part of the responsibilities of USC_NI task. During the time that USC software is running, USC_TM continuously pings all other tasks to determine their health. If one task becomes unresponsive, USC_TM will restart that task for x amount of times. USC_TM by itself will be started by usc_start script in a loop. So if USC_TM dies, usc_start script will try to start it again for x amount of times.

[image: image2.png] Diagram 2-2: Task Relationships
SECTION 5
TASK INTERFACES

EX - MC: Interface between USC Executive (USC_EX) and USC Monitor and Control (USC_MC) task

USC_EX and USC_MC interface with each other through a Common Software VC channel by the mean of messages. For this interface channel USC_EX is the server with the logical name of “USC_EX”, and USC_MC is the client with the logical name of “USC_MC”. The VC channel between EX and MC tasks allows each task to send event messages, monitor data messages, directive and directive responses to the other task.

Protocol Messages
	Message
	Sender
	Receiver
	Message Type
	Data
	Decription

	UscMON_DEVICE_DATA
	USC_MC
	USC_EX
	Mondata
	UscDeviceList
	This message contains a list of devices that MC sends to EX. This message is used to synchronize data at initialization and to notify EX when any device information has changed

	UscDIR_CHANGE_REQUEST Directive
	USC_EX
	USC_MC
	Directive
	UscDeviceStruct
	This message is a directive sent to USC_MC requesting to move a switch. When the message is sent from EX task, it must include switch identification and new position. The directive response must be the same structure with current position and current status filled in.

	UscDIR_CHANGE_REQUEST Directive
	USC_MC
	USC_EX
	Directive Response
	UscDeviceStruct
	See UscDIR_CHANGE_REQUEST Directive for detail.

	UscMON_MC_STATUS
	USC_MC
	USC_EX
	Mondata
	UscStatusStruct
	This message must be sent to EX task when MC enters initialization mode, initialization completes, H/W status changes, or software error occurs. It must fill in the status code and text of those that are modified, and set the valid field data.

	UscEVENT_SYNC
	USC_EX
	USC_MC
	Event
	None
	This is a message from EX to MC indicating that EX internal data is synchronized

	UscEVENT_NOT_SYNC
	USC_MC
	USC_EX
	Event
	None
	This is a message from MC to EX indicating that data is out of sync.

	UscEVENT_NOT_SYNC
	USC_MC
	USC_EX
	Event
	None
	This is a message from EX to MC indicating that data is out of sync.

EX/MC - NI: Interface between USC Executive (USC_EX), USC Monitor and Control (USC_MC) and USC NMC Interface (USC_NI) tasks

The interface between USC_EX/USC_MC and USC_NI is defined by CmnNi library within Uplink CMN Application Framework library (libCmn) and follows the Uplink Software Architecture. In this architecture, USC_EX and USC_MC initialize CmnNiObject by CmnNiInit() library function. The CmnNiObject then opens a new channel to USC_NI task and forwards all messages between these two tasks. Incoming messages are Directives, Event Notices, CCNs, and Monitor Data Items. Outgoing messages are Event Notices, Directive Responses, and Monitor Data Items. For the detail of messages between two tasks refer to Uplink CmnNi Library Man page at http://eis.jpl.nasa.gov/upldev/man/D3/man3/CmnNi.html.

EX/MC – TM: Interface between USC Executive (USC_EX), USC Monitor and Control (USC_MC) and USC Task Monitor (USC_TM) tasks

The interface between USC_EX/USC_MC and USC_TM is defined by CmnTm library within Uplink CMN Application Framework library (libCmn) and follows the Uplink Software Architecture. In this architecture, USC_EX and USC_MC initialize CmnTmObject by CmnTmInit() library function. The CmnTmObject then opens a new channel to USC_TM task and forwards ping/response messages between the two interfacing tasks. For the details of messages passed between TM and EX/MC tasks refer to Uplink CmnTm Library man page at http://eis.jpl.nasa.gov/upldev/man/D3/man3/CmnTm.html.

NI – TERM: Interface between USC NMC Interface (USC_NI) and USC Terminal (USC_TERM) tasks

The interface between USC_NI and USC_TERM is defined by Smc library within Uplink Subsystem Monitor and Control Framework library (libSmc) and follows the Uplink Software Architecture. In this architecture, USC_EX and USC_MC initialize AppSmcObject by SmcInit() library function. The AppSmcObject then emulates NMC Interface to USC_NI and forwards messages between these two tasks. For the details of messages passed between NI and TERM tasks refer to Uplink Smc Library man page at http://eis.jpl.nasa.gov/upldev/man/D3/man3/Smc.html.

MC – DIAG: Interface between USC Monitor and Control (US_MC) and USC Diagnostic (USC_DIAG) tasks

The interface between USC_DIAG and USC_MC is similar to the interface between USC_EX and USC_MC. It contains all the messages passed between EX and MC plus one lower level Optomux mondata sent from DIAG task to MC task.

Protocol Messages
	Message
	Sender
	Receiver
	Type
	Data
	Decription

	UscMON_DEVICE_DATA
	USC_MC
	USC_DIAG
	Mondata
	UscDeviceList
	This message contains a list of devices that MC sends to DIAG. This message is used to synchronize data at initialization and to notify DIAG when any device information has changed

	UscDIR_CHANGE_REQUEST Directive
	USC_DIAG
	USC_MC
	Directive
	UscDeviceStruct
	This message is a directive sent to USC_MC requesting to move a switch. When the message is sent from DIAG task, it must include switch identification and new position. The directive response must be the same structure with current position and current status filled in.

	UscDIR_CHANGE_REQUEST Directive
	USC_MC
	USC_DIAG
	Directive Response
	UscDeviceStruct
	See UscDIR_CHANGE_REQUEST Directive for detail.

	UscMON_MC_STATUS
	USC_MC
	USC_DIAG
	Mondata
	UscStatusStruct
	This message must be sent to DIAG task when MC enters initialization mode, initialization completes, H/W status changes, or software error occurs. It must fill in the status code and text of those that are modified, and set the valid field data.

	UscEVENT_SYNC
	USC_DIAG
	USC_MC
	Event
	None
	This is a message from DIAG to MC indicating that DIAG internal data is synchronized

	UscEVENT_NOT_SYNC
	USC_MC
	USC_DIAG
	Event
	None
	This is a message from MC to EX indicating that data is out of sync.

	UscEVENT_NOT_SYNC
	USC_MC
	USC_DIAG
	Event
	None
	This is a message from DIAG to MC indicating that data is out of sync.

	DIAG_OPTO_CMD
	USC_DIAG
	USC_MC
	Mondata
	UscOptoCmdStruct
	This monitor data message is a lower level message that allows USC_DIAG to send an Optomux command to USC_MC. The USC_DIAG is responsible to create Optomux command according to CCG H/W/Software interface specification and sends it to USC_MC task. For details of the command format, see CCG H/W specification document, Software/Hardware interface.

SECTION 6
 SEQUENCES OF INTER-TASK MESSAGE TRANSFERS

Initialization State: Inter-task messages and sequences during initialization

[image: image3.png]
Diagram 4-2: Inter-Task message sequences: Startup

1- Operator/maintenance personnel start the USC by USC_START script

USC_START script performs the following

1- USC_START script runs MDSServer and NameServer if required (For standalone only)

2- USC_START script runs the USC_TM task

USC_TM performs the following during initialization

1- USC_TM starts USC_EX, USC_MC and USC_NI tasks

USC_NI performs the following during initialization

1- USC_NI loads MCIS libraries

2- USC_NI connects to Complex Supervisor (CS)

3- USC_NI publishes standard monitor data

4- USC_NI waits for other tasks to connect

5- USC_NI transit into idle state (See Idle state sequences and scenarios)

USC_EX task performs the following steps during initialization

1- USC_EX waits for USC_NI to start and connect

2- USC_EX publishes standard monitor data

3- USC_EX publish overall status MARGINAL with text INITIALIZING…

4- USC_EX Reads, validates and loads checkpoint file

5- USC_EX reads, validates and loads site specific table

6- USC_EX waits for MC task to establish VC connection

7- USC_EX transit into idle state (See Idle state sequences and scenarios)

USC_MC task performs the following steps during initialization

1- USC_MC waits for USC_NI to start and connect

2- USC_MC waits for USC_EX to start and connect

3- USC_MC sends mondata UscMON_MC_STATUS to USC_EX with status INITIALIZING…

4- USC_MC reads, validates and loads site specific table

3- USC_MC loads UscHw library

4- USC_MC reads the state of all H/W switches and interlocks

6- USC_MC publish monitor data with the state of all switches and interlocks

7- USC_MC sends mondata UscMON_DEVICE_DATA with the state of all switches attached to USC_EX task

8- USC_MC sends mondata UscMON_MC_STATUS to USC_EX with actual status

9- USC_EX publishes hardware status monitor data

10- USC_MC transit into idle state (See Idle state sequences and scenarios)

Idle State: Inter-task messages and sequences while USC is in idle state
[image: image4.png]
Diagram 4-1: Inter-Task message sequences: Monitor Loop

[image: image5.png]
Diagram 4-2: Inter-Task message sequences: Control Loop

USC_START script performs the following

1- Wait for USC_TM task to stop or kill

2- Rerun USC_TM task

USC_TM task performs the following

1- USC_TM constantly monitors the health of USC_EX, USC_NI and USC_MC tasks

2- USC_TM restarts the USC_EX, USC_NI and USC_MC if not responsive or killed

USC_NI task performs the following

1- USC_NI receives health ping from USC_TM and sends response back

2- USC_NI receives Operator Directives from NMC and pass them to USC_EX

3- USC_NI receives Event Notices from USC_EX and USC_MC task and passes them to NMC

4- USC_NI receives Monitor Data from USC_EX and USC_MC task and publishes the monitor data items to connection Engine (CE) or Complex Supervisor (CS) based on the connection state

5- USC_NI receives CCN

a. USC_NI changes the connection state to Assigned/Unassigned

b. USC_NI passes the CCN to USC_EX task

USC_EX task performs the following

1- USC_EX receives health ping from USC_TM and sends response back

2- USC_EX receives directives from USC_NI (See each directive for specific sequence)

3- USC_EX monitors support data inbox for incoming support data from SPPA (See Support data sequence)

4- USC_EX receives CCN from USC_NI (See Auto configuration sequence)

5- USC_EX receives UscMON_DEVICE_DATA mondata from USC_MC task

a. USC_EX determines Microwave configuration from switch settings

b. USC_EX publishes monitor data

c. If not the first time USC_EX started, Sends the Event Notice: “Switch <switch number> has unexpectedly moved.”

6- USC_EX receives MC_STATUS mondata from USC_MC task

a. USC_EX updates overall status

b. USC_EX publishes status monitor data

USC_MC task performs the following

1- USC_MC receives health ping from USC_TM and sends response back

2- USC_MC requests switch and interlock status from hardware every 500ms

a. USC_MC publishes monitor data for switch/interlock states

b. If any switch has changed and is not requested by EX_CHANGE_SWITCH, USC_MC
sends mondata UscMON_DEVICE_DATA to USC_EX

c. If switch status is failure,

i. USC_MC sends event notice: “Switch <switch number> status error!”

ii. USC_MC changes the H/W status to WARNING with the text specifying switch failure.

iii. USC_EX sends message MC_STATUS to USC_EX

3- USC_MC receives UscDIR_CHANGE_REQUEST directive from USC_EX

a. USC_MC sends command to CCG/HW to move the switch

b. USC_MC waits for switch to change or timeout

c. If timeout

i. USC_MC sends event notice to USC_NI: “Switch <Switch Number> didn’t move in xxx seconds, RETRYING…

ii. USC_MC resends the command to CCG/HW (this can happen no more than 3 times)

iii. If after three retry, switch still didn’t move,

1. USC_MC sends event notice: ”Movement Timeout on switch <switch Number>”

2. USC_EX sends message MC_STATUS to USC_MC

c. USC_MC sends directive response back to USC_EX (Success or Failure with the text)

Auto Configuration: Inter-task messages and sequences when USC receives CCN
1- Complex Supervisor builds the link

2- USC_NI Receives CCN message (See Idle sequence for USC_NI)

3- USC_EX Receives CCN message

4- USC_EX subscribes to NMC monitor data for all <SpacecraftNumber>s and <PassNumber>s, and <uplink-active-spacecraft>s

5- USC_EX receives callback for <SpacecraftNumber>s and <PassNumber>s

6- USC_EX compares <SpacecraftNumber> and <PassNumber> from NMC with <SpacecraftNumber> and <PassNumber> in checksum

a. If one SpaceCraft and Pass number from NMC is the same as the checksum

i. USC_EX sends event notice: “Auto configuration ignored. Continuation of previous track.”

ii. USC_EX ignores the configuration and transit into the idle state.

7- USC_EX searches the support data current folder for non-pass support data for all <SpacecraftNumber>s and <PassNumber>s

a. If doesn’t exist

i. USC_EX sends event notice: “Auto configuration failed. No support data found for <scn>. Use CNF.

ii. USC_EX ignores the configuration and transit into idle state.

c. USC_EX reads and loads support data file

d. USC_EX publish status for “MARGINAL” with configuring text

f. USC_EX sends event notice: “Auto configuration in progress for SC <scn>”

8- If more than one support-data found

a. USC_EX logically ‘ands’ all requested configurations (uplink config of only <uplink-active> spacecraft will be used). See table 4-1 for the detail of support data combination method

b. If conflict occurs, USC_EX sends event notice: “Auto configuration ignored. MSPA conflict between <scn> and <scn>”

9- USC_EX determines the set of switches need to be moved to configure microwave subsystem with specified configuration parameters.

10- USC_EX compares the switch settings to validate them against transmitter critical paths

a. To comply with critical path USC_EX adds additional switch settings to the list of switches that needs to be moved

12- USC_EX sends a series of EX_CHANGE_SWITCH directives to USC_MC (See Idle sequences of USC_MC task for detail)

13- USC_EX waits until receives directive responses for all UscDIR_CHANGE_REQUEST directives

a. If at least one response is failure:

i. USC_EX sends event notice: “Auto configuration failed. Use CNF”.

ii. USC_EX transit into Idle state.

b. If all responses are successful

i. USC_EX sends event notice: “Auto configuration successfully performed for <scn>.”

13- If USC_EX receives call back from MCIS that NMC monitor data for <SpacecraftNumber> or <PassNumber> has changed:

a. USC_EX sends event notice: “New spacecraft added to the track. Use CNF.”

Default Configuration: Inter-task messages and sequences when an operator issues CNF with default configuration directive

1- Operators Issue CNF

2- USC_NI Receives the CNF directive (See Idle sequence for USC_NI task)

3- USC_EX Receives the CNF directive

4- USC_EX parses and validates CNF parameters

5. USC_EX validates parameters for current antenna site

6. USC_EX determines the set of switches needed to be moved to configure microwave subsystem with specified configuration parameters.

7. USC_EX sends a series of UscDIR_CHANGE_REQUEST directives to USC_MC (See Idle sequences of USC_MC task for detail)

8- USC_EX compares the switch settings to validate them against transmitter critical paths

a. To comply with critical path USC_EX adds additional switch settings to the list of switches that needs to be moved

9. USC_EX waits until it receives directive responses for all UscDIR_CHANGE_REQUEST directives, send PROCESSING/WAIT if required

a. If at least one response is failure:

i. USC_EX sends directive response: “REJECTED. xxx” (where xxx is the reason of failure)

b. If all responses are successful

ii. USC_EX sends directive response. “COMPLETED. Downlink = <downlink_configuration> Uplink = <uplink_configuration>”

10. USC_EX transit into idle state.

User Configuration: Inter-task messages and sequences when an operator issues CNF <user configuration> directive

1- Operators Issue CNF

2- USC_NI Receives the CNF directive (See Idle sequence for USC_NI task)

3- USC_EX Receives the CNF directive

4- USC_EX parses and validates CNF parameters

5- USC_EX searches for user configuration file

6- If file doesn’t exist

a. USC_EX response: “REJECTED. Configuration File Doesn’t Exist”

b. USC_EX transit into idle state.

7- For each switch setting in user config file, USC_EX sends one UscDIR_CHANGE_REQUEST directive to USC_MC (See Idle sequences of USC_MC task for detail)

8- USC_EX waits until it receives directive responses for all UscDIR_CHANGE_REQUEST directives, send PROCESSING/WAIT if required

a. If at least one response is failure:

i. USC_EX sends directive response: REJECTED. xxx (where xxx is the reason of failure)

b. If all responses are successful

i. USC_EX sends directive response. “COMPLETED. UWV is configured for <user configuration>”

9- USC_EX transit into Idle state.

Individual Switch Setting: Inter-task messages and sequences when an operator issues MOD directive

1- Operators Issue MOD

2- USC_NI Receives the MOD directive (See Idle sequence for USC_NI task)

3- USC_EX Receives the MOD directive

4- USC_EX parses and validates MOD parameters

5- USC_EX validates the switch setting against transmitter critical paths
a. If critical path violation exist, USC_EX stops the process and rejects the directive by: “REJECTED. Critical Path Violation. Cant move switch xxx” where xxx is the name of the switch
6- USC_EX sends an EX_CHANGE_SWITCH directive to USC_MC (See Idle sequences of USC_MC task for detail)
7- USC_EX waits until receives directive response for the EX_CHANGE_SWITCH directive, send PROCESSING/WAIT if required

a. If the rsponse id failure:

i. USC_EX sends directive response: REJECTED. xxx (where xxx is the reason of failure)

b. If all responses are successful

i. USC_EX sends directive response. “COMPLETED. Switch xx is now at position yy” where xx is the switch number and yy is the actual position of the switch

8- USC_EX transit into Idle state.

Support Data Handling: Inter-task messages and sequences when USC receives support data from SPPA

1- USC_EX monitors file system SSPA inbox for support data file

2- If Support data file exist

a. USC_EX sends event notice: "Support data validation in progress."

b. USC_EX reads the end of a file and search for **END**. If **END** doesn't exist (ftp is not completed), USC_EX waits 1 second and read again (maximum 5 times)

d. If failed

i. USC_EX sends event notice: "Error importing table <table>. Reason: <reason>"

ii. USC_EX transit into Idle state.

e. USC_EX reads and validates the file.

f. If validation fail:

i. USC_EX sends event notice: "Support Data (xxx) Not Valid. Ignored…"

ii. USC_EX moves the file to $USC_LOCAL/trash.

g. USC_EX moves the file to $USC_LOCAL/supdata/current.

h. USC_EX copies the file into $USC_LOCAL/supdata /archive folder and attaches the date, time, and version to the file name.

j. USC_EX sends event notice: "Support data validation completed."

3. USC_EX transit into Idle state.

SECTION 7
Error Handling

The Microwave Subsystem Controller (USC) handles hardware and software errors in the following way:

I/O Failures

The I/O failure is detected when the USC can not read, write, open or configure serial port, it can not establishes connection to CCG hardware equipment, and/or ambiguous data is read from the hardware which indicates communication error(such as invalid response).

When an I/O failure is detected, the USC will send an event notice to notify operator and changes the status of overall CCG subsystem as well as the status of H/W interface to CRITICAL and publishes proper monitor data to be included in USCD displays.

The I/O failure will be recovered when the communication to CCG hardware equipment has successfully restored.

Switch Movement Failure

A switch is considered “fail to move” if it does not move within the allowable time limit after specific command is sent to CCG hardware equipment.

When a switch fails to move, the USC changes the status of that switch, the CCG H/W, and overall subsystem to CRITICAL, and sends proper event notice and diagnostic texts.

NOTE: If switch movement is part of a larger configuration set, the USC will attempt to move the rest of switches and response failure after configuration is completed.

The Switch Failure will be recovered and its status will return to operational when another move request (same switch) successfully completes.

CCG Component Failure

The USC determines CCG component failure when CCG ILA reports the failure status.

When CCG component failure is detected, the USC will set the CCG H/W and overall subsystem status to CRITICAL and sends appropriate and descriptive event notices to NMC and/or CS.

The CCG components recover when their status returns to normal.

Support Data Error

A support data file is considered invalid if any parameter is invalid, it does not contain the “**end**”, the DSS number does not match the current site, or the configuration request is not supported by that antenna site.

When the USC receives an invalid support data, it will send a descriptive message to NMC/CS and moves the support data into USC specified trash directory.

Directive Parameter Failure

Any failure caused by invalid directive parameters (such as invalid switch number for a site) will result in the rejection message sent to NMC.

CCN error

If USC receives a CCN message it subscribes to connection monitor data specified in CCN. If connection monitor data shows an invalid DSS number and/or times out, the CCN will be considered to be in error and will be ignored.

When the USC detects CCN error, it will generate proper descriptive event message and sends it to CS. The CCN will be ignored and USC stays in UNASSIGNED mode.

CCN error will be recovered when new valid CCN is received by the USC.

Unexpected Software Failure

If one of the USC tasks crashes, halts, or fails to response within the allowable time, that task will be restarted and continues its normal operation. This will be done without making any changes to the actual Microwave switch configuration.

All events that caused the crash to failure, if possible, will be logged for later troubleshooting.

PART C
SOFTWARE DETAILED DESIGN

SECTION 8
Definitions

The following terminologies are used in this document to express object-oriented design methods:

OBJECT

An object is a combination of data and behaviors put together in a single representation. Each Object encapsulates a set of related data and performs a set of related functionality through methods of which operates on the object data.

INSTANTIATABLE & NON-INSTANTIATABLE OBJECTS

Instantiatable objects are those that can be created more than once, and each are identified by a unique identifier (mainly pointer to a structure). All instantiatable objects of the same type perform identical functionalities, but may contain different data. A non-instantiatable objects is the one that cannot be re-created and contains only one instance of object data. Non-instantiatable objects are sometimes referred to as “STATIC OBJECT”. In this document, unless otherwise specified, when the term “object” is used it refers to a non-instantiatable objects.

MODULES

A module is a file that contains code. This code may define scripts, library functions, task functions, and/or object definitions.

OBJECT MODULE & OBJECT DEFINITION

An object module is a module that contains the code of which defines the object data elements and methods. An object module does not contain any data nor perform any functionality; instead, an object module defines the data structures and contains the code in which caries object behavior. In this document “Object Module” and “Object Definition” are interchangeably used.

OBJECT RESPONSIBILITY, OBJECT BEHAVIOR, & OPERATION

Each function that an object shall carry is referred to as an object responsibility, object behavior, and/or operation. These three terms are interchangeably used within this document.

METHOD, OBJECT METHOD & OBJECT PUBLIC FUNCTION

The code within each object module that defines an object behavior is referred to as Method, Object Method, and/or Object Public Function. These terms are interchangeably used within this document.

SECTION 9
Framework

The Microwave Subsystem Controller (USC) software is designed according to Uplink Common software framework and supported by Uplink Common Software library set. For the details of Uplink Common Software visit http://eis.jpl.nasa.gov/upldev/cgi-bin/upldev.cgi?Uplink_Common_Software.

In addition to Uplink Common Software, the USC applications are, also, designed according to Microwave Device Database framework, which is supported by Microwave Device library set. The Microwave Device Database framework defines the centralized task database for all microwave devices and provides tools and functions for intra-task object and module communications. According to this framework, each USC tasks binds into a real-time task dependent database. Each object and/or module embedded in the task can access the database, search for specific device, read device specification and update specific fields. At the same time, other objects and/or modules may register to get update notification for one or several devices within the task database; such objects will get notification if one or more field of the registered device(s) changes. With this technique, objects can act more independently and there is no need for an object to know about the responsibility of others and/or to pass messages as something internally changes. See Microwave Device man page (Appendix L) for the details of library functions.

SECTION 10
 Libraries

The following libraries will be used by one or more USC tasks:

Microwave Subsystem Controller Libraries

UscHw(3) (USC Hardware Interface Library)
The UscHw library serves as a gateway between USC and CCG Hardware, communicates to the OPTO 22 “B1 Brain Board” with Optomux protocol and translate Optomux low-level digital indications to switch numbers and interlock names. It is built on top of the Opto22 Optomux and TC&DM VcTimeout libraries.

UscDevice(3) (USC Microwave Device Library)
The UscDevice library serves as a main microwave device database for MC, EX, and DIAG tasks and performs message distribution for all microwave device related activities. The UscDevice reads and parses site specific configuration files at initialization and it is built on top of the TC&DM CuList, CuHash, and CuCallbackList libraries
UscApp(3) (USC Application Initialization Library)

The UscApp library provides standard initialization code required by most USC tasks. It is built on top of the Uplink CmnApp, and UscDevice Libraries
UscLocal(3) (USC Local library)
This library module is a helper library of which allows applications to find the USC_LOCAL directory tree
UscLog(3) (USC log library)

The UscLog library module provides functionality to allow logging of messages by all USC tasks.

UscParm(3) (USC initialization PVL parser library)

The UscParm library module reads, parses, and validates the USC resource initialization file, and provides access to the file's parameters.
UscCheckpoint(3) (USC Checkpoint library)

This library provides API functions for reading, writing and validating checkpoint files.
UscScTable(3) (USC Spacecraft Support Data Library)

The UscTable library module provides functions for reading and parsing USC support data files.

For the details of USC libraries, refer to their man pages (Appendix J to N).

Uplink Common Software Libraries
libCmnApp (CMN Application Framework library) will be used by all tasks
libGu (Graphics Utility) will be used by USC_TERM and USC_DIAG

libTmApp (Task Monitor Framework) will be used by USC_TM

libNiApp (NMC interface framework) will be used by USC_NI

libSmc (Subsystem Monitor and Control Framework) will be used by USC_TERM

For the details of Uplink Common Software Libraries, refer to Uplink Common Software Man pages for Delivery 3 (D3).
SFOC TC&DM
TCS Common Software
libCu (Common Utilities) will be used by all tasks

libPu (PVL utility) will be used by USC_PARM and UscParm

libVc (Virtual Channel) will be used by all tasks

libVcTcl (Virtual Channel TCL) will be used by scripts

libVcXt (Virtual Channel Xt) will be used by XuscApp
Standards Support Subsystem

Libsss (Standards Support Subsystem) will be used by UscPvl

Monitor & Control Infrastructure Services
For the details of MCIS libraries, refer to 820-19 MON-1, MCIS user guide and library man pages.

Uniform Display Services
For the details of UDS libraries, refer to 820-19 MON-7, UDS user guide, and UDS library function reference.

SECTION 11
USC Internal Site Specific Tables

The USC consists of several site-specific tables; each defines a separate group of parameters in Parameter Value Language (PVL) format (See CCSDS 641.0-B-2 document). At each antenna, there will be one resource file, one device file, several display files, and one or several transmitter critical path file(s).

Internal Site Specific tables are organized in a hierarchy with resource file at the top referencing device file and device file referencing display and TXR critical path files

[image: image6.png]
Diagram 5-1: Site-specific table hierarchy

NOTE: Table installation script will copy device file, display files, and critical path files to NMC FS directory mounted on USC and modifies resource file to reference the new tables.
Resource File

Resource file is a parameter value language file (PVL), which defines the parameters needed for USC to successfully initialize. The Resource filename is uscrc.pvl and contains the following:

	Parameter
	Format
	Default
	Description

	NmcMode
	Network Standalone
	Network
	This parameter dictates how the USC will interact with the NMC subsystem. The Standalone setting indicates that the USC is using its own MDS Server, and has no NMC. The Network setting implies that the NMC and the USC are interacting as specified in 820-19 MON-2”.

	DssNum
	Integer
	
	The Deep Space Station (DSS) number of the front-end to which this subsystem is connected.

	DssFacilityCode
	Integer
	
	The facility code for this station (DssNum).

	DssSubfacilityCode
	Integer
	
	The subfacility code for this station (DssNum).

	DssNascomSrcCode
	Integer
	
	NASCOM source/destination code for this station (DssNum).

	FuncName
	String
	
	The MON-2 permanent functional address for this subsystem.

	UscdProgramId
	String
	
	This is the program Id of Microwave Subsystem Controller Displays (USCD) associated to the current version of USC.

	UscdVersionId
	String
	
	This is the version of Microwave Subsystem Controller Displays (USCD) associated to the current version of USC.

	NetworkDisplayPath
	String
	/nmcfs/share/specs/ <UscdProgramId>/ <UscdVersionId>/bin
	This is the name of the Microwave Subsystem bin directory on NMC file server containing the subsystem’s displays.

	LocalDisplayPath
	String
	/uscd/disp/bin
	This is the name of the local bin directory containing the subsystem's UDS displays.

	MdspecFile
	String
	/nmcfs/share/specs/ <ProgramId>/ <VersionId>/data/ mdspecs.dat
	Absolute path to the subsystem's MDSPECS file

	PhysDir
	String
	
	Root physical name for USC's MDS physical names. In operations, it should typically be the following:

/.:/dsn/server/usc
/.:/dsn/test/usc

When this file is loaded, the value of this parameter is automatically put into the environment as MDSCLIENTCDSDIR.

	HostAddress
	String
	
	This value should be the address of the USC host: either the string representation of the host's IP address, or the host name itself. The MCIS requires this information on hosts with more than one IP address. The chosen host name or address must be visible to the MDS Server.

When this file is loaded, the value of this parameter is automatically put into the environment as MDSCLIENTADDRESS.

	DefaultMdsServerFile
	String
	/nmcfs/share/cs/

serverlists/servers
	The name of a file containing the names of one or more MDS Servers to which the subsystem can connect.

/nmcfs/share/cs/serverlists/servers.

Note that MdsServerFile parameter, which derives from this one and from NmcMode, yields the value actually used by the USC software.

	DefaultNameSeverFile
	String
	/nmcfs/share/cs/

serverlists

/Local_NameServers_

Config_File\n"

	The name of a file containing the host names of one or more MCIS Name Servers to which the subsystem can connect.

Note that NameServerFile parameter, which derives from this one and from NmcMode, yields the value actually used by the USC software.

	MdsServerFile
	String
	The value of DefaultMdsServerFile
	The name of a file containing the names of one or more MDS Servers to which the subsystem can connect. If the NmcMode is not Standalone, the value of DefaultMdsServerFile is used; otherwise the following path is used

$USC_LOCAL/tables/

MDSServerList

When this file is loaded, the value of this parameter is inserted into the environment as MDSSERVERFILE.

	NameServerFile
	String
	The value of DefaultNameServerFile

	The name of a file containing the host names of one or more MCIS Name Servers to which the subsystem can connect. If the NmcMode is not Standalone, the value of DefaultNameServerFile is used; otherwise the following path is used $USC_LOCAL/tables/nameserver_file

When this file is loaded, the value of this parameter is inserted into the environment as NAMESERVER_FILE.

	SiteDeviceFile
	String
	$USC_LOCAL

/tables/site/

dss<dss#>.device.pvl
	Absolute path to the a file containing the antenna microwave device information.

	SiteSimFile
	String
	$USC_LOCAL/

tables/site/

dss<dss#>.sim.pvl
	Absolute path to the file containing the antenna microwave module simulation information.

	LogDirMaxByte
	Integer
	4194304
	The NI checks the size of the files in the current log\ directory every TimeoutLogCheck seconds; if the total exceeds LogDirMaxBytes in size, a new log directory is opened.

	LogMode
	Fatal,
Warning,
Default,

D1, D2, D3, D4

	Default
	The default log mode for the subsystem. It may take any of the values accepted by CuLogTextToMode(3)

	SimMode
	Off,
On,

Partial
	Off
	The simulation mode for the subsystem. Set to Off, if all devices are present, set to On, if no device is present, and set to Partial, if some devices are present.

Note: If SimMode is set to Partial then SiteSimFile will be used to determine with hardware modules are simulated.

	NiPath
	String
	/usc/bin/usc_ni
	Absolute path to the USC NI Task executable file, which must exist.

	TmPath
	String
	/usc/bin/usc_tm
	Absolute path to the USC TM Task executable file, which must exist.

	ExPath
	String
	/usc/bin/usc_ex
	Absolute path to the USC EX Task executable file, which must exist.

	McPath
	String
	/usc/bin/usc_mc
	Absolute path to the USC MC Task executable file, which must exist.

	PurgeLogCmd
	String
	./usc/bin/

usc_purge_log
	This parameter should be set to a command string which purges the USC's log files. It will be executed by the TM task every TimeoutLogPurge seconds. Command line arguments may be included in the string; see usc_purge_log(1) for a list

	RestartLimit
	Integer
	10
	The USC automatically restarts tasks that go down. However, tasks that restart frequently, i.e., more than RestartLimit times in restartPeriod minutes, are candidates for special handling.

	RestartPeriod
	Integer
	15
	The USC automatically restarts tasks that go down. However, tasksthat restart frequently, i.e., more than RestartLimit times in RestartPeriod minutes, are candidates for special handling.

	TimeoutLogCheck
	Integer
	600
	The USC checks the total number of bytes in the current log irectory every TimeoutLogCheck seconds, and opens a new log directory if the total exceeds LogDirMaxBytes bytes.

	TimeoutLogPurge
	Integer
	3600
	Every TimeoutLogPurge seconds, the TM task executes the PurgeLogCmd.

	TimeoutPing
	Integer
	5
	The TM task pings the other tasks in the system every TimeoutPing seconds.

	TimeoutReset
	Integer
	5
	The USC gives task groups this amount of time to finish shutting down gracefully before trying to start them up again.

	TimeoutHang
	Integer
	45
	The TM task assumes that any other task which has not sent it a ping response or some other message in the last TimeoutHang seconds is dead or hung.

	TimeoutStart
	Integer
	15
	The TM task assumes that any other task which has not started up within TimeoutStart seconds failed to start has died, or is hung.

For an example of resource file, see appendix A.

Device File

Device file is a parameter value language file (PVL), which contains information about all UscDevices and their specifications. The device file contains the following information:

· All Microwave Devices and their specification (i.e. Switch, LNA, TXR, Output, etc)

· RF links between microwave devices and their specification (wave-guide, coax)

· For each transmitter there is one reference to a TXR critical path table

· List of all run-time MAP displays and the path of display files

There is one device file for each antenna. The device file name for each antenna must be identical to the DeviceFilePath parameter of resource file. Even though USC software does not restrict the filename, for the purpose of consistency, the following format SHALL be used for all ‘device filenames’.

Device filename:= dss<dss_number>.device.pvl (i.e. dss34.device.pvl)

The Device PVL file consists of a high-level object DSS<dss_number> for each antenna site and several child groups representing site-specific configurations. Each child group can be one of the following formats:

1- Device Object
Each Device object represents one instance of UscDeviceStruct. The valid parameters for each device are as followed:

	Device Object Parameters

	Parameter
	Format
	Default
	Description

	NAME
	String (Max 8)
	
	The name of device

	DESCP
	String

(Max 25)
	
	The description of device

	NUMBER_OF_CONNECTIONS
	Integer
	
	Number of physical connections on the device

	BAND
	S, X, L, Ka
	
	Device Signal Band

	SIMMODE
	On, Off
	Off
	On if device is simulated otherwise Off

	DEFAULTINHIB
	On, Off
	Off
	On if device by default is inhibited.

Note that this is the initialization value and changes as USC reads the hardware status.

	DEFAULTSTATUS
	Critical,
Warning,

Operational,

Out_Of_Service
	Out_Of_Service
	The initialization status of device.

Note that this is the initialization value and changes as USC reads the hardware status.

	DEFAULTSTATUSQUAL
	None
	None
	The initialization status qualifier for the device.

Note that this is the initialization value and changes as USC reads the hardware status.

	DEFAULTBITMAP
	String
	“unknown”
	The string representation for device bitmap name.

Note that the device bitmap is also specified in display file. The value in this file will be used as a default value for BITMAP in display file.

	TYPE
	SWITCH,

LNA,

TXR,

WATERLOAD,

AIRLOAD,

AMBIENT,

HORN,

SIGGEN,

DIPLEXER,

POLARIZER,

COPLER,

MIXER,

OUTPUT,

OTHER
	
	The device type. The value in this field should match the object type defined with spec object.

	Embedded Objects

	Object Name
	Description

	Specs
	Device Specification Object. The object type is defined by the TYPE parameter above.

	Switch Object Parameters (Specs for SWITCH type)

	Parameter
	Format
	Default
	Description

	NUMBER_OF_POSITIONS
	Integer
	2
	Number of switch positions

	TIMEOUT
	
	
	

	Embedded Objects

	Object Name
	Description

	Position_x
	There is one position object for each switch position where x is the position number. (ie. A two position switch contains two position object Position_0 and position_1)

	Position Object Parameters

	Parameter
	Format
	Default
	Description

	OPTO_CMD_MOD
	Integer
	
	Opto-22 module number to command for this position

	OPTO_CMD_POS
	Integer
	
	Opto-22 module position number to command for this position

	OPTO_IND_MOD
	Integer
	
	Opto-22 module number to read this position

	OPTO_CMD_POS
	Integer
	
	Opto-22 module position number to read this position

	CONx
	Integer
	
	Describes which connections are connected together when switch is at this position, where x is the connection number. (i.e CON1 = 2 means connection one is connected to connection 2 when switch is at this position)

	LNA Object Parameters

	Parameter
	Format
	Default
	Description

	INPUT_PORT
	Integer
	0
	The connection number indicating the input port to the LNA

	OUTPUT_PORT
	Integer
	1
	The connection number indicating the output port of the LNA

	STS_AVAILABLE
	True, False
	False
	True if LNA status is available

	OPTO_STS_MOD
	Integer
	0
	If LNA status is available, this field defines the Opto-22 module address to read LNA status

	OPTO_STS_POS
	Integer
	0
	If LNA status is available, this field defines the Opto-22 module position to read LNA status

	Txr Object Parameters

	Parameter
	Format
	Default
	Description

	OUTPUT_PORT
	Integer
	0
	The connection number indicating the output port of the Transmitter

	STS_AVAILABLE
	True, False
	False
	True if beam status from transmitter is available

	OPTO_BEAM_MOD
	Integer
	0
	If Beam status is available, this indicate the Opto-22 module address to read beam status

	OPTO_BEAM_POS
	Integer
	0
	If Beam status is available, this indicate the Opto-22 module position to read beam status

	CRIT_FILE_NAME
	String
	
	The file name to the Critical Path file for this transmitter

	Water Load Object Parameters

	Parameter
	Format
	Default
	Description

	INPUT_PORT
	Integer
	0
	The connection number indication the input port to water load device

	Air Load Object Parameters

	Parameter
	Format
	Default
	Description

	INPUT_PORT
	Integer
	0
	The connection number indication the input port to air load device

	Ambient Load Object Parameters

	Parameter
	Format
	Default
	Description

	OUTPUT_PORT
	Integer
	0
	The connection number indicating the ambient load output port

	Horn Object Parameters

	Parameter
	Format
	Default
	Description

	OUTPUT_PORT
	Integer
	0
	The connection number indicating the horn output port

	Siggen Object Parameters

	Parameter
	Format
	Default
	Description

	OUTPUT_PORT
	Integer
	0
	The connection number indicating the signal generator output port

	STS_AVAILABLE
	True, False
	False
	True if signal generator status is available to read

	OPTO_STS_MOD
	Integer
	0
	If signal generator status is available, this indicates the opto-22 module address to read the status

	OPTO_STS_POS
	Integer
	0
	If signal generator status is available, this indicates the opto-22 module position to read the status

	Diplexer Object Parameters

	Parameter
	Format
	Default
	Description

	MIXED_PORT
	Integer
	0
	The connection number of which receives two directional receive and transmit signal

	TX_PORT
	Integer
	1
	The connection port of which receives transmit signal

	RCV_PORT
	Integer
	2
	The connection port of witch receive signal is output

	Polarizer Object Parameters

	Parameter
	Format
	Default
	Description

	MIXED_PORT
	Integer
	0
	The connection number of which receives mixed polarity signal

	LCP_PRT
	Integer
	1
	The connection number of with LCP polarity signal is output

	RCP_PRT
	Integer
	2
	The connection number of which RCP polarity signal is output

	Coupler Object Parameters

	Parameter
	Format
	Default
	Description

	NUMBER_OF_OUTPUTS
	Integer
	2
	Number of coupler outputs

	INPUT
	Integer
	0
	The connection number of which receives input signal.

	OUTPUTx
	Integer
	0
	The connection number of which signal is output, where x is the input number

	Mixer Object Parameters

	Parameter
	Format
	Default
	Description

	NUMBER_OF_INPUTS
	Integer
	2
	Number of coupler connection that receives input signal

	INPUTx
	Integer
	0
	The connection number of which receives input signal, where x is the input number

	OUTPUT
	Integer
	0
	The connection number of which signal is output.

	Output Object Parameters

	Parameter
	Format
	Default
	Description

	INPUT_PORT
	Integer
	0
	The connection number of which receives input signal

	OUTPUT_PORT
	Integer
	1
	The connection number of which signal is output

	OUTPUT_DEVICE
	String (Max 5 char)
	BVR
	The name of device/subsystem which receives UWV output signal

For an example of device object specification, see appendix B.

2- Link Object

Each Link object represents one instance of UscLinkStruct. The valid parameters for each link object are as followed:

	Link Object Parameters

	Parameter
	Format
	Default
	Description

	NAME
	String (Max 8 char)
	
	The name of microwave link

	DESCP
	String (Max 64 char)
	
	The description for microwave link

	DEV1
	String
	
	The name of the first device that the link is connected to

	CON1
	Integer
	
	He connection number on device one of which this link is connected to

	DEV2
	Integer
	
	The name of the second device that the link is connected to

	CON2
	Integer
	
	He connection number on device two of which this link is connected to

	BAND
	X, S, L, Ka, …
	
	The signal band for this link

For an example of link object specification, see appendix C.

3- Display Object

Each Display object represents one MAP type display, and contains the display filename for referencing purpose. The valid parameters for each display object are as followed:

	Display Object Parameters

	Parameter
	Format
	Default
	Description

	NAME
	String
	
	Display Name

	DESCP
	String
	
	Display Description

	FileName
	String
	
	Relative path to the display file name from the location of this device file.

For an example of link object specification, see appendix D.

Display Files

Display file is a parameter value language file (PVL), which contains display specific information about all USC devices on each MAP display. The display file contains the position and orientation of Microwave devices on each Map display

The display file name for each antenna must be identical to the FileName parameter of the corresponding display object on the device file. Even though USC software does not restrict the filename, for the purpose of consistency, the following format SHALL be used for all ‘display filenames’.

Display filename:= dss<dss_number>.disp.<display_name>.pvl (i.e. dss34.disp.smap.pvl)

The Display PVL file consists of a high-level object <Display_number> for each MAP Display and several child objects representing each device. The valid parameters for each device object on the display file are as followed:

	Device Object Parameters for Display file

	Parameter
	Format
	Default
	Description

	DEVICE
	String
	
	The name of device as specified in device file

	CENTER_X
	Integer
	0
	The X Axis logical coordinate of the center of the device

	CENTER_Y
	Integer
	0
	The Y Axis logical coordinate of the center of the device

	ROTATION
	Integer
	0
	The counter clockwise angle of the device positioned on the MAP display

	ZOOM
	Integer
	1
	The ration of which bitmap is drawn

	STYLE
	String
	None
	Bit wise OR (‘|’) of the following:

None,
SHOW_NAME,
SHOW_DESC,

SHOW_BAND,

SHOW_POLARITY,

SHOW_DPLX_MOD,

STATUS_COLOR

	CONNECTION_x
	MIDTOP,

MIDBOTTOM,

MIDRIGHT,

MIDLEFT,

ONETHIRDTOP,

ONETHIRDBOTTOM,

ONETHIRDRIGHT,

ONETHIRDLEFT,

TWOTHIRDTOP,

TWOTHIRDBOTTOM,

TWOTHIRDRIGHT,

TWOTHIRDLEFT
	0: MIDTOP
1: MIDRIGHT
2: MIDBOTTOM

3: MIDLEFT
	The position on the bitmap of which connection x is drawn.

For an example of display file, see appendix E.
Critical Path File

Transmitter critical path file is a parameter value language file (PVL), which defines the rules and logics that need to be followed when each transmitter beam is ON. Each critical path file contains a set of Conditions and Rules each defined in the form of an object. The following tables define the valid parameters for each of these objects:

	Condition Object Parameters for Critical Path File

	Parameter
	Format
	Default
	Description

	BEAM
	On, Off
	
	The beam status for this condition

	TOUT
	HORN | WTR
	
	The transmitter output status for this condition

	KEY
	NONE | OVERRIDE
	None
	The Key position for this condition.

Note: If KEY=None this condition will be ignored

	RULE
	
	
	The rule that applies if condition is valid

	Rule Object Parameters for Critical Path File

	Parameter
	Format
	Default
	Description

	Sxx
	A | B | C | …
	
	The position of switch xx. This implies that switch xx shall be in the position specified otherwise the rule is violated.

	INT_CLOSED
	String
	
	The name of interlock that shall be close otherwise the rule will be violated

	KEY
	NONE | OVERRIDE
	None
	The Key position for this condition.

Note: If KEY=None this condition will be ignored

	RULE
	
	
	The rule that applies if condition is valid

For an example of Critical Path file, see appendix F.

Simulation File for OptoMux Boards

This main simulation file is a parameter value language file (PVL), which defines

Whether an optomux board is simulated (disabled) or hooked up to real hardware (enabled). For an example of Simulation file, see appendix G.

SECTION 12
USC Configuration Tables (created by operators)

User configuration tables are those created at site by operators. Each table contains a list of switches and their positions and can be executed as requested by operators. The user configuration tables are in Parameter Valued Language (PVL) format where parameters are switch names and values are switch positions.

For an example of User Configuration file, see appendix H.

SECTION 13
USC Support Data Tables (kept at NSS)

The 820-16, 0327-USC-NSS Interface Agreement defines the specifics of the support data tables:

Specification:

** TABLE SPEC USC_SC_DSS

*1 CREATED=01/288 03:00:00 MOD=01/288 03:00:00 REV=00.00.00

*# Microwave Subsystem Controller (USC) Table specification for downlink/uplink site data

*@ END OF HEADER

#

DSS Site: INT 0|99 # DSS number 0-99 (14, 43, 63, 15, 45, 65, 24, 25, 26, 27, 34, 54, 55)

SCN Spacecraft: INT 0|255 # Spacecraft Number 0-255

DOWNLINK ARRAY(1,100) #number of bands at this antenna

 Band: STR 1|6 # S, X, Ka, L, S2, X2, Ka2, L2, Ka2Ku2, XKa, NA,etc.

 Source: STR 2|6 # HORN, LOAD, XTR, SPD, ULTRA, XXKa, NA

 Polarization: ENUM LCP|RCP|NA # For this Band, the downlink polarization is lcp, rcp or Not Applicable

 Path: ENUM LONLY|DPLX|RADAR|NA # For this Band, the downlink path is listen-only, diplex Lna: UINT 1|100 #For this Band, the downlink LNA is 1, 2, 3 (1=prime LNA, 2=Alternate LNA, 3=Ultra cone)

 ;

UPLINK ARRAY(1,100) #number of bands at this antenna

 Band: STR 1|6 # S, X, Ka, L, S2, X2, Ka2, L2, Ka2Ku2, XKa, NA,etc.

 Polarization: ENUM LCP|RCP|NA #For this Band, the uplink polarization is lcp,rcp or NA

 TxrName: STR 1|10 #TXRS20k, TXRX20k, TXRS400k, TXRS400kR, TXRX400kR, TXR20Kw, NA

 TxrOut: ENUM HORN|WTR|NA #The transmitter is radiating out the horn or into the water load

 ;

= END =

For an example of User Configuration file, see appendix I.

SECTION 14
USC Monitor & Control (USC_MC) task

The Monitor and Control (MC) task consists of 4 major objects: the Hardware Proxy (Hw), Executive Proxy (Ex), Switch Manager (Swt) and Monitor (Mon) objects. The functionality of MC task is separated into two processes (Monitor and Control) both running on the main thread.

The monitor process will be initiated by the Hardware Proxy (Hw) object periodically in 500ms intervals. During each interval Hardware Proxy (Hw) object reads the CCG Hardware Optomux module positions through UscComm library and updates it’s local mirror of Optomux addresses. If any bit has changed, the Hardware Proxy (Hw) updates the appropriate site device and calls UscDeviceUpdateDevice(3), which calls the registered callbacks in Monitor Object (Mon). The Monitor Object then finds the appropriate monitor data mnemonics for the updated device and publishes data to NMC through USC NI by CmnNiPublish(3) library functions. The Executive Proxy (Ex) object, also receives notification about updated modules. When it receives such notification by UscDeviceUpdateDevice, it will send a UscMON_DEVICE_DATA VC message to usc_ex task. The nominal sequences of monitoring process are shown in figure 6-1.

[image: image7.png]
Figure 6-1: USC_MC Monitor Process

The control process will be initiated by Executive Proxy (Ex) object. When Ex object receives UscDIR_CHANGE_REQUEST directive, it validates the command, sends a Nexus Signal McExNEW_REQUEST. The switch manager, which observes McExCHANGE_REQUEST Nexus(3) signal, picks up the signal, validates the switch, verifies critical path conditions and sends a command to CCG Hardware Optomux modules through Hardware Proxy (Hw) object by public function McHwChangeRequest(). Right after sending the command to CCG Hardware, Switch Manager (Swt) registers a VC respond timer for x (ms) interval (where x is switch timeout defined in the device file), and registers for a device update. If device updates during timeout interval, the device update callback will be called, timer will be disabled, and the response will be sent to ETC_EX through Executive Proxy (Ex) object by ExResponseSend() public function. If timeout is reached and switch still didn’t move, Switch Manager (Swt) re-sends the command to CCG Hardware and registers for another response timer. This process continues for three times. If it fail, Swt object sends a Failure response to ETC_EX by ExResponseSend() public function of Executive Proxy (Ex) object. The directive response UscDIR_CHANGE_REQUEST closes the control loop and USC_MC task will continue the monitoring process. The nominal sequences of control process are shown in figure 6-2.

[image: image8.png]
Figure 6-2: USC_MC Monitor Process

Executive Proxy (Ex) Object

The Executive Proxy (Ex) object is responsible to manage communication interface between USC_EX and other USC_MC objects. The following are the responsibility of Ex Proxy object:

1- Synchronize USC_EX and USC_MC device data

The synchronization process runs every time USC_EX starts, restarts, or communication between USC_MC and USC_EX is lost and restored. In this sequence, when communication between MC and EX establishes, the Ex Proxy Object sets its internal state to STATE_SYNC_IN_PROGRESS and sends the information of all devices to USC_EX by UscMON_DEVICE_DATA message. When USC_EX successfully updates all it’s device information, it will send UscEVENT_SYNC message back to USC_MC. Consequently, the Ex Proxy receives the message, and sets its internal state to STATE_SYNC. The Ex Proxy objects sets its internal state to STATE_NOT_SYNC if it loses communication to USC_EX or receives UscEVENT_NOT_SYNC from USC_EX task.

When Ex Proxy object state is STATE_NOT_SYNC, no messages will be sent to USC_EX task, and all send requests will be dropped. When Ex Proxy object is STATE_SYNC_IN_PROGRESS, also, no messages will be sent to EX task, but all send requests will be stored in a local queue and will be sent to USC_EX in the order that is received after synchronization is completed.

2- Monitor UWV Devices and notify USC_EX task for changes

The Ex Proxy registers for update notification of all devices by UscDeviceUpdateRegister. When Ex proxy is notified for any device update, it will send the changes to EX task in a UscMON_DEVICE_DATA message. If more than one device is updated, the Ex Proxy shall send only one message to USC_EX task with the list of devices that has changed.

3- Monitor USC_EX task for incoming directives

The Ex Proxy registers for UscDIR_CHANGE_REQUEST directive from USC_EX, when receives the message it will issue a Nexus Signal notifying Switch Manage (Swt) object for proper action. When new directive is arrived, the Ex Proxy sets its internal state to IN_PROGRESS, and waits for directive response request. When response request is received, Ex Proxy sends the response to USC_EX and sets its internal state to IDLE.

USC_MC can only move one switch at a time, so during IN_PROGRESS state, all other directives except UscDIR_HALT, UscDIR_MAINT, and UscDIR_QUERY will be rejected.

Hardware Proxy (Hw) Object

Hardware Proxy (Hw) object is responsible to manage hardware interface for USC_MC task. It continuously reads and monitors hardware modules, updates local UscDevices and notifies other task objects. It also receives change request from Switch Manager (Swt) object and forwards the requests to CCG Hardware using UscHwComm library functions.

During initialization, Hardware Proxy (Hw) object performs the following:

1- Reads the specification of all UWV devices and builds an array to mirror all hardware digital I/Os and associates each array entry with its corresponding site device.

2- Update device simulation state based on SimMode defined in resource file, simulation file, and devices file.

3- Initializes UscwComm library module.

4- Configures all H/W modules for proper digital input/output.

5- Registers 500ms VC timeout callback function to update data.

When update timeout function is called, the Hardware Proxy (Hw) object reads the position status of all hardware modules in mirror array, updates the mirror, builds the array of devices that has modified since last update, and finally calls UscDeviceUpdateDeviceList() to notify other objects in Usc_MC task.

The Hw object, also, implements the McHwMoveRequest() public function. This function will be called by Swt object, and when called, Hw object searches the hardware mirror array to find the proper digital module address and position to set and sends the command to CCG hardware using UscHwComm library functions. See UscHwComm man page for details.

Monitor (Mon) Object

The Monitor (Mon) Object is responsible to publish all low-level device monitor data items.

During initialization, the monitor data builds a table containing the monitor data mnemonics and data that have to be published for each device. It then initializes all table entries with default fields and publishes all monitor data items relevant to the site by CmnNiPublish() library function. The default values for all status items are CODE_CRITICAL, all positions are UscPOS_UNKOWN, all interlocks are UscIL_ERROR, and all indications are UscIND_UNKNOWN. This method guarantees that all monitor data items relevant to the site are published at least once, and if Hardware Proxy (Hw) object fails to match hardware state of any device, the status will remain CODE_CRITICAL.

At the end of initialization, the Monitor (Mon) Object Registers to receive device update notification for all devices. When Monitor object receives update notification, it finds monitor data table entry for each device in the update list, updates data files in the table, and publishes required monitor data as defined in the table by CmnNiPublish() library function.

The Monitor object, also, subscribes to one of the NMC monitor data items. If NMC monitor data items changes to INVALID and returns to VALID state, the Monitor object will attempt to publish all items in the monitor data list regardless of update status. This guarantees that if Connection Engine (CE) dies for any reason, the USC monitor data will be re-published when CE restarts.

Switch Manager (Swt) Object

The Switch Manager (Swt) object is responsible to handle all switch movement requests and critical path verifications.

During initialization Swt object registers for the Nexus signal from Executive Proxy (x) object, registers for Device Update on all transmitters and water load switches, and loads critical path files for each transmitter available in the site.

When receives notification about transmitter beam, it will construct critical path violation and rules according to transmitter switch position.

When it receives a Nexus signal from Ex object, it will check the critical path rules. If switch movement violates any of those rules, the switch manager generates updates the device and sets critical path violated flag to true. The EX task then picks up device update after data transfer between proxy objects and generates the proper directive response.

SECTION 15
USC Executive (USC_EX) task

The Executive (Ex) task consists of 7 major objects: the NMC Proxy (Nmc), Monitor and Control Proxy (Mc), Configuration Manager (Cnf), Support Data Handler (Sup), User Configuration (Usr), Status Manager (Sts), and Signal Path (Sp) objects. The functionality of Executive Task is divided into two processes (reporting and configuration) both running on the first thread.

The reporting process will be initiated by Monitor and Control Proxy (Mc) object. When Mc object receives UscMON_DEVICE_DATA, it will update appropriate site devices and calls UscDeviceUpdateDevice() or UscDeviceUpdateDeviceList() to notify other objects. When devices are updated, both Signal Path (Sp) and Status Manager (Sts) objects get notification. The status manager, then, reads the status of all modules and updates it’s local status structure, and published data to NMC by CmnNi library functions. At the same time, the Signal Path (Sp) object reads the position of all switches, indications and interlocks and determine the signal path for each UWV outputs, it updates it’s local signal path structure and publishes monitor data by CmNi library functions.

The configuration process will be initiated by NMC Proxy (Nmc) object. When Nmc object receives a MOD OD, CNF OD or CCN, it processes the arguments and sends a Nexus Signal to notify Configuration Manager (CNF) object to perform new configuration. The Cnf object then determines the list of switches that need to be moved by asking either Support Data (Sup) in case of CCN, User Configuration (Usr) in case of CNF with user config, Signal Path (Sp) in case of CNF with signal path, or simply a directive argument in case of MOD. After CNF object construct the list of switches, it will send them to USC_MC task one by one through Monitor and Control Proxy (Mc) object and waits for response. After all responses are received or timed out, the Cnf object sends a Nexus Signal to notify NMC proxy that requested configuration is completed. The NMC proxy then generates proper directive response or event notice and completes the configuration process.

NMC Proxy (Nmc) Object

The NMC Proxy (Nmc) Object is responsible to manage communication interface between USC_EX and USC_NI tasks. The actual interface is built on top of CmnNi library of Uplink Common software and performs the following functionalities.

1- Establishes Connection between USC_EX and USC_NI

This function is provided by Uplink CmnNi library. For more details refer to CmnNi(3) man pages.

2- Receives Incoming Directives and Forward them to appropriate handler object

At initialization, Nmc Object registers to receive all USC Operator Directives except BOOT.

Nmc Proxy Object handles directives in the following way:

CNF <User Config>

a- Validates all parameters and verifies that no other directive is in progress

b- Sends ExCNF_USER Nexus Signal, and waits for response. (Configuration manager (Cnf) is the observer of this signal)

c- After 1 second is passed Nmc object sends PROCESSING response to NMC. Another PROCESSING response will be sent after 5 seconds and continues until directive response is received.

CNF <Downlink Default Config> or CNF <Downlink Signal Path Parameters>

a- Validates all parameters and verifies that no other directive is in progress

b- Sends ExCNF_DOWN_PATH, and waits for response. (Configuration manager (Cnf) is the observer of this signal)

c- After 1 second is passed Nmc object sends PROCESSING response to NMC. Another PROCESSING response will be sent after 5 seconds and continues until directive response is received.

CNF <Uplink Default Config> or CNF <Uplink Signal Path Parameters>

a- Validates all parameters and verifies that no other directive is in progress

b- Sends ExCNF_UP_PATH, and waits for response. (Configuration manager (Cnf) is the observer of this signal)

c- After 1 second is passed Nmc object sends PROCESSING response to NMC. Another PROCESSING response will be sent after 5 seconds and continues until directive response is received.

CNF AUTO or CNF AUTO <file name>

a- Validates all parameters and verifies that no other directive is in progress

b- Sends ExCNF_AUTO, and waits for response. (Support Data Manager (Sup) is the observer of this signal)

c- After 1 second is passed Nmc object sends PROCESSING response to NMC. Another PROCESSING response will be sent after 5 seconds and continues until directive response is received.

MOD

a- Validates all parameters and verifies that no other directive is in progress

b- Sends ExCHANGE_REQUEST, and waits for response. (Monitor & Control proxy (Mc) is the observer of this signal)

c- After 1 second is passed Nmc object sends PROCESSING response to NMC. Another PROCESSING response will be sent after 5 seconds and continues until directive response is received.
DEF

a- Validates all parameters and verifies that no other directive is in progress

b- Sends ExUSR_DEFINE, and waits for response. (User Configuration (Usr) object is the observer of this signal)

c- After 1 second is passed Nmc object sends PROCESSING response to NMC. Another PROCESSING response will be sent after 5 seconds and continues until directive response is received.

SAVE

a- Validates all parameters and verifies that no other directive is in progress

b- Sends ExUSR_SAVE, and waits for response. (User Configuration (Usr) object is the observer of this signal)

c- After 1 second is passed Nmc object sends PROCESSING response to NMC. Another PROCESSING response will be sent after 5 seconds and continues until directive response is received.
DEL

a- Validates all parameters

b- Sends ExUSR_DELETE, and waits for response. (User Configuration (Usr) object is the observer of this signal)

c- After 1 second is passed Nmc object sends PROCESSING response to NMC. Another PROCESSING response will be sent after 5 seconds and continues until directive response is received.

TABLE

a- Validates all parameters and verifies that no other directive is in progress

b- Sends ExSUP_IMPORT, and waits for response. (Support Data Manager (Sup) object is the observer of this signal)

c- After 1 second is passed Nmc object sends PROCESSING response to NMC. Another PROCESSING response will be sent after 5 seconds and continues until directive response is received.
HALT

a- Validates all parameters

b- Sends ExALL_HALT, and waits for response. (This signal will be observed by Usr, Cnf, and Mc objects)

c- After 1 second is passed Nmc object sends PROCESSING response to NMC. Another PROCESSING response will be sent after 5 seconds and continues until directive response is received.

SCN

a- Validates spacecraft number

b- Updates checkpoint file and stored spacecraft number which will be used by CNF AUTO

c- Sends directive response REJECTED or COMPLETED.

PASS

a- Validates pass number

b- Updates checkpoint file and stored pass number which will be used by CNF AUTO

c- Sends directive response REJECTED or COMPLETED.

LOG

a- Validates all parameters

b- Changes the USC Log mode as requested

c- If LOG text is used, sends LOG_ONLY event notice with the text in the directive.

3- Handles Incoming CCNs

At initialization, Nmc Object registers to receive CCN message.

When REQUEST_ASSIGNED is received, Nmc object performs the following:

a- Updates NMC functional address and sets program state to ASSIGNED

b- Publishes all initialized monitor data to the new NMC Assigned address

c- Checks for NMC standard (incoming) monitor data and waits until monitor data items become valid.

d- Opens the checkpoint file and compares the PASS and SCN from monitor data with checkpoint.

e- If checkpoint and NMC monitor data are different, updates the checkpoint and sends ExCNF_AUTO Nexus signal to notify Configuration Manager (Cnf) object to perform new configuration, otherwise, sends and event notice and ignores auto configuration.

f- Sends identification event notice.

When REQUEST_UNASSIGNED is received, Nmc object performs the following:

a- Sets program state to UNASSIGNED

b- Publishes all initialized monitor data to the new Complex Supervisor (CS) address

When REQUEST_REASSIGN is received, Nmc object does everything as if request was assigned, except it always bypasses the auto configuration.

Monitor & Control Proxy (Mc) Object

The Monitor & Control Proxy (Mc) object is responsible to manage communication interface between USC_EX and USC_MC tasks. The following are the responsibility of Monitor & Control Proxy object:

1- Synchronize USC_EX and USC_MC device data

The synchronization process runs every time USC_EX starts, restarts, or communication between USC_MC and USC_EX is restored. In this sequence, when communication between MC and EX is established, the Mc Proxy Object sets its internal state to STATE_SYNC_IN_PROGRESS and waits for UscMON_DEVICE_DATA message from USC_MC task. When message is received Mc Proxy updates all device information and sends UscEVENT_SYNC message back to USC_MC. The Mc Proxy objects sets its internal state to STATE_NOT_SYNC if it loses communication to USC_MC or receives UscEVENT_NOT_SYNC from USC_MC task.

When Mc Proxy object state is STATE_NOT_SYNC, no messages will be sent to USC_MC task, and all send requests will be dropped. When Mc Proxy object is STATE_SYNC_IN_PROGRESS, also, no messages will be sent to MC task, but all send requests will be stored in a local queue and will be sent to USC_MC in the order that is received after synchronization is completed.

2- Monitor USC_MC task for device updates

The Mc Proxy object registers for UscMON_DEVICE_DATA message from USC_MC task. When message received, the Mc Proxy updates device data attached and calls UscDeviceDeviceUpdate to notify all other modules within the task. If Mc Proxy encounters any error while updating data, it will send UscEVENT_NOT_SYNC message to USC_MC to force resynchronization of two tasks.

3- Monitor Site Devices and notify USC_MC for change requests.

The Mc Proxy object registers to observe NmcDIR_MOD Nexus signal. When signal is received, Mc Proxy compares commanded and actual position of modified switches. If they differ, Mc Proxy sends UscDIR_CHANGE_REQUEST to USC_MC, and registers for timeout. When the response is received, the communication drops, state changes to STATE_NOT_SYNC, or request times out, the Mc Proxy updates device status, calls UscDeviceUpdateDevice() to notify all other task objects, and sends appropriate directive response to NMC by using Nmc Proxy public function. For the list of response strings and symbolic constants, see USC Developer PSOM.

Configuration Manager (Cnf) Object

The Configuration Manager (Cnf) object is responsible to perform and track all configuration change request including Auto Configuration, User Configuration and Default Configuration for both uplink and downlink tracks. Cnf object observes four Nexus signals and performs the following:

ExCNF_USER Signal

When ExCNF_USER signal is received, Cnf Object query the list of switches and target positions from User Configuration (Usr) object and compare them with USC_EX local switch database to determine the list of switches that needs to be changed. After the list is constructed, Cnf Object sends ExCHANGE_REQUEST nexus signal for the first element in the list and waits for response. After response is received (failure or success), the Cnf Object sends the second Nexus signal for the second element in the list and waits for its response. This process continues until change request is sent for the entire element in the list. After the last response is received, Cnf Object sends a response to ExCNF_USER by calling the response function. A success response will be sent, if all responses received for change request are successful, otherwise the response will be failure.

ExCNF_DOWN_PATH and ExCNF_UP_PATH Signals

When ExCNF_DOWN_PATH or ExCNF_UP_PATH signal is received, Cnf Object query the Signal Path (Sp) object for reverse uplink or downlink signal path translation list and compares the list with USC_EX local switch database to determine the list of switches that needs to be changed. After the list is constructed, Cnf Object sends ExCHANGE_REQUEST nexus signal for the first element in the list and waits for response. After response is received (failure or success), the Cnf Object sends the second Nexus signal for the second element in the list and waits for its response. This process continues until change request is sent for the entire element in the list. After the last response is received, Cnf Object sends a response to ExCNF_DOWN_PATH or ExCNF_UP_PATH by calling the response function. A success response will be sent, if all responses received for change request are successful, otherwise the response will be failure.

ExALL_HALT Signal

When ExALL_HALT signal is received, if any configuration is in progress, Cnf object purges all pending switch movements from its pending configuration queue and waits for the response on the last change request sent to Mc object. When the response is received (success or failure), Cnf object sends a REJECTED response to the configuration originator and the diagnostic text indicates that the progress is aborted.

Support Data Handler (Sup) Object

Support Data (Sup) object is responsible to import and validate support data files when they are received from SPPA. Also reading, parsing and determining signal path from support data files are the responsibility of Sup object.

1- Importing Support Data Files

The following are done by initializing UscTable(3) library module:

At initialization, it registers to receive timeout notification very 5 minutes. When timeout callback is received, Sup object checks for any new file in the inbox. If new file exists, it performs the following:

a- Move the file into $LOCAL/supdata/processing folder. Notify user by EN.

b- Validates file format and containing signal path against its DSS number. This is done by calling usc_sup_validate(1) tool. See man pages. Notify user by EN.

c- If file is valid, move into current and archive directory. Attach creation data and revision to the name. Notify user by EN.

d- If the file is invalid, UscTable moves it into $USC_LOCAL/trash folder and notifies the user by EN.

2- Nexus Signals

The Sup object receives the following Nexus Signals:

ExCNF_AUTO Signal

When ExCNF_AUTO signal is received, Sup Object queries Configuration manager (Cnf) to see if any other configuration is in progress. If there is, it sends ExALL_HALT Nexus signal to Cnf object and waits until all pending configurations are aborted. Then it searches the support data catalog for the support data file based on the filename in Signal structure or the latest revision of spacecraft and DSS numbers. If the file is found, Sup object opens it to obtain both uplink and downlink signal paths requested for track; then issues ExCNF_DOWN_PATH and ExCNF_UP_PATH Nexus signals with the uplink and downlink signal path structure. The response process for these Nexus signals will be forwarded to the response process of the ExCNF_AUTO originator. If no support data file exists, a Failure response will be sent immediately.

ExSUP_IMPORT Signal

When ExSUP_IMPORT is received, Sup Object runs its import routine and sends STARTTED response immediately. Note: start routine runs every 5 minutes by support data check timer function; in addition, this signal can force the import routine to execute immediately regardless of the time elapsed since last check.

User Configuration (Usr) Object

The User Configuration (Usr) object is responsible to create, modify and read user configuration files. This object observes three Nexus Signals ExUSR_DEFINE, ExUSR_SAVE, and ExUSR_DELETE and implements one query public function.

ExUSR_DEFINE Signal

The ExUSR_DEFINE client data is a structure that contains the name of user config file, the overwrite flag, and a list of switches and their desired positions. When this signal is received, the User Configuration (Usr) Object verifies that the file name is valid and checks to see if the file already exists. If the file name is invalid or the file exists and overwrite flag is not set, a rejected response will be sent, otherwise the user file will be created and switch list will be written to the file. For the detail of User configuration file format see configuration table section.

ExUSR_SAVE Signal

When ExUSR_SAVE signal is received, the Usr object reads the position of all switches in UscDevice database and creates a list of switches and their positions. After the list is created, Usr object performes the same functionality as if ExUSR_DEFINE signal was received. Note that the ExUSR_SAVE client data contains only the name and overwrite flag.

ExUSR_DELETE Signal

When ExUSR_DELETE signal is received, the Usr object deletes the file identified by signal client data. If no file exists a rejection message will be sent.

Query Public Function

In addition to signal handling, the Usr object, also, implements a public function to query a user configuration file. This function reads a user configuration file and returns the contents to the caller function.

Status Manager (Sts) Object

The Status Manager (Sts) object is responsible to determine and publish the status of Overall UWV subsystem, Hardware Interface, CCG Components, Low Noise Amplifiers, antenna transmitters, and software behaviors. When Sts object initializes, it registers to receive update notification when any switch, interlock or indication changes. When an update notification is received, the Sts object checks the status of that component. If any status changes, the Sts object logically combines all status items to determine the overall subsystem and publishes the changes.

In addition to component status, Sts object, also, verifies the connection between MC and EX as well as MC and CCG Hardware to determine software and hardware interface status. Any result from these calculations, also, will be added to the overall subsystem status.

For the detail of status codes under different error conditions refer to part 1-software functions.

SECTION 16
USC Network Monitor & Control (NMC) Interface (USC_NI) task

The USC NMC Interface Task is responsible for all MON-1/MCIS communications for all tasks executing on the Microwave Subsystem Controller (USC). This task is a small shell around the CMN NiApp(3) application framework (the USC inherits this application framework from uplink); the shell initializes and localizes the NI application based on information from the USC resource file (uscrc.pvl).

The USC NMC Interface Task performs the following functions:

· Connects to the MDS Server

· Registers one functional address

· Allows other tasks to connect via CmnNi(3)

 The tasks that connect via CmnNi(3) may receive

 CCN data, receive operator directives and send

 directive responses, publish monitor data, subscribe

 to monitor data and send event notifications.

The USC NI has no duties beyond those undertaken by NiApp(3) for CmnNi(3) clients; those are adequately described in the relevant uplink man pages.

USC NMC Interface (usc_ni) Object

The USC NI initializes the NiApp(3) framework as follows:

1. Determines the USC local work directory by calling UscLocalInit().

2. Acquires the initial log directory from the command line.

3. Opens the log. Log files use the file name “ni.log” and the source acronym “NI”.

4. Loads the resource (uscrc.pvl) parameters.

5. Calls NiAppInit() to initialize the application framework. It requires the following parameters:

· DsnSite, FuncName, MdsServerFile, MdspecsFile, PhysDir, and HostAddress from uscrc.pvl

· The USC NI’s libVc logical name, UscNI

· The USC TM’s libVc logical name, UscTM

· The USC libVc logical name directory, UscLocalVc().

The NiAppInit() initializes the libVc event loop, connects to the MDS Server, connects to the TM Task, and registers the permanent subsystem address.

6. Registers to receive a number of CCN error signals (NiMdsALREADY_ASSIGNED, NiMdsINVALID_CCN_TYPE, NiMdsCANNOT_REGISTER_ADDR, NiMdsASSIGNED_IS_PERM, NiMdsINVALID_CCN_ADDR) from NiApp. On receipt, USC NI sends the relevant event notifications to the NMC.

7. Registers to receive the CmnTmCLIENT_SIGNAL from CmnTm(3); this signal will notify the USC NI if the USC TM goes down, at which point USC NI will shut down as well.

8. Starts the event loop by calling NiAppLoop().

Nothing else needs to be done; the USC NI will automatically connect to the USC TM, and is now ready to handle clients.

SECTION 17
USC Task Monitor (USC_TM) task

The USC TM Task consists of 1 object: usc_tm.

The USC TM Task is responsible for invoking the USC NMC Interface task (usc_ni) and the USC Executive task (usc_ex). It is also responsible for monitoring their health, killing them if they become unresponsive and restarting them should they go down. In addition, if TM goes down and is restarted, it should attempt to reconnect to any existing tasks. The USC TM Task is also responsible for executing the “BOOT” operator directive.

USC TM will be implemented using the Uplink Common Software’s TmApp(3) framework;clients communicate with USC TM using the Uplink Common Software’s CmnTm(3) API. See the relevant uplink man pages.

USC Task Monitor (usc_tm) Object

The USC TM Task performs the following functions:

1. Create the log and vc scratch directories plus checkpoint, config, inbox, scripts, test, trash directories if they do not already exist. The USC needs two directories for communication. The 1st is the root log directory; the 2nd is the Vc(3) logical name registry directory.

2. Create the initial log directory with a suffix of “start”. Example: 2002-218/log0000-start

3. Initialize TmApp(3)’s logger. The logger will open a file called “tm.log” in the newly created log directory: Example: /log/2002-218/log0000-start/tm.log. Each line written to the file by the logger will include the task’s acronym, “TM”. The CMN log scheme calls for each task to write it’s own log file.

4. Calls TmAppInit() to initialize the application framework. It requires the following parameters:

a. TimeoutStart, TimeoutPing, TimeoutHang, TimeoutReset, TimeoutLogCheck and LogDirMaxBytes from uscrc.pvl

b. The USC TM’s libVc logical name, UscTM

c. The USC libVc logical name directory, UscLocalVc().

5. Register to receive the TmTASK_PROXY_SIGNAL from TmApp(3); this signal will notify the application if a task has hung or died or failed to start.

6. Invoke USC_NI, USC_EX tasks at start-up; if any one of them halts, it is restarted automatically, up to RestartLimit.

7. Register to receive the “BOOT” operator directive. When this operator directive is twice received within 30 seconds, the TM task will kill all other tasks and then halt itself. The “usc_start” script will then automatically restart the TM task which will in turn start all the other tasks.

8. Schedule periodic purge log command. Monitor the size of the log. If it gets larger than LogDirMaxBytes, a new log directory will be opened automatically.

9. Starts the event loop by calling TMAppLoop().

SECTION 18
USC Maintenance Terminal (USC_TERM) task

The USC Term Task consists of 6 objects: overall term main object, USC Subsystem, Status and Diagnostics panels object, Monitor Data dialog box object, File Path Sub-display object, Simulation dialog box object, Log Control dialog box object.

The USC Term is the USC subsystem’s maintenance and test terminal. Much of the functionality of USC Term is provided by the Gu(3) and Smc(3) libraries. Gu(3) contains GUI components such as the scrolling log; Smc(3) provides basic monitor and control capabilities analogous to the NMC’s.

The USC Term is designed to run in two different environments:

a. NMC Mode=Standalone (UscNMC_STANDALONE)

This case occurs when the USC is running with its own MDS Server during development or maintenance. The USC Term will take on the NMC’s role completely.

b. NMC Mode=Network (UscNMC_NETWORK)

This case occurs when the USC is running with the NMC’s MDS Server and the NMC is aware of the USC’s existence (e.g., normal operations). The USC Term monitors the USC and may send directives, but may not send CCNs.

The NMC mode is set by “usc_start” script using usc_nmc_mode and manifest as a change to the uscrc.pvl resource initialization file. In particular, the “NmcMode” parameter will be set to “Standalone” or “Network”.

USC Term Main (usc_term) Object

The USC Term is the main program. It is responsible for initializing the UDS, the MDS, and all other objects. Initialization must be done in the proper order, due to object and library dependencies. Note that objects belonging to the Gu(3) and Smc(3) libraries are not included. The initialization scenario is as follows:

1. Initialize the UDS using UiInitialize(); USC Term is a general UDS application, not a UDS subsystem display. See 820-019, MON-7 Uniform Display Service (UDS) standard for a complete description of UiInitialize().

2. Use argv[1], if given, as USC_LOCAL. Insert it into the environment for executed programs.

3. Set the USC Term icon.

4. Create the display boilerplate using UiCreateGeneralDisplay(), requesting:

· Menu Bar

· Connection Bar

· Tool Bar

· Screen Selection Tool Set

· Work Form

· Message Line

5. Create a GuScrollingLog(3).

6. Create a GuCommandLine(3) as a directive command line.

7. Initialize the USC’s local directories, halting on error.

8. Initialize libVc communications, using VcXtLoopInit().

9. Initialize GuLog(3), setting libUsc’s log handler.

10. Initialize the connection to the USC TM, and prepare to receive updates.

11. Read the USC resource file (uscrc.pvl), halting on error.

12. Set the log mode to CuLOG_DEFAULT. USC Term’s log mode is always DEFAULT unless changed by the user.

13. Set the “site” on the connection bar and set the display title.

14. Initialize the Smc(3) (Subsystem Monitor and Control) framework, giving it the following USC resource parameters (from uscrc.pvl):

· DsnSite, DssNum

· USC assigned FuncName

· USC permanent FuncName

· NmcMode

· LocalTables scratch directories

· UDS DisplayPath

· Name of the MDS Server File, mdsServerFile

· PhysDir

 This framework is responsible for simulating the NMC, handling directives, and so forth.

15. Register to receive and log USC event notifications.

· In “Standalone” mode, use GuEvent(3) to receive them via MCIS.

· In “Network” mode, connect to the USC NI and use CmnNi(3) to trace all events sent out by the USC.

16. Create the following additional GUI elements:

· GuScrollSet(3), to control scrolling log scrolling.

· SmcDispMenu, to allow displays to be invoked.

· SmcCcnMenu

· MonitorMenu (on menu bar)

· SimMenu (on menu bar)

· LogControlMenu (on menu bar)

· IdenityPanel

· StatusPanel

17. Pack elements in the work form.

18. Start main UDS/libVc loop (UiMainLoop()).

USC Subsystem, Status and Diagnostics panels (ct_panels) Object

The subsystem panel appears in the USC Term’s main window, and displays the following monitor data items providing general information about the USC:

· PGMID

· VersionID

· PGSTA (translated to “Assigned” or “Unassigned”)

The status and diagnostics panel appears in the USC Term’s main window, and displays the USC overall status and accompanying diagnostic text.

The ct_panels object uses Smc(3), Ui UDS function calls.

USC Monitor Data Dialog Box (ct_monmenu) Object

The Monitor Button appears on the USC Term’s main window, and when pressed, the dialog box pops up displaying the following items:

· File Paths

· NMC Data

· Data Xref (this invokes the usc_xref(1) application)

The ct_monmenu object uses Ui UDS function calls.

USC File Path Sub-display (ct_pathsub) Object

The “File Paths” button appears in the Monitor data dialog box, and when pressed, the USC Term: File Paths display will pop up showing the following items:

· UscLocal: (path of local directory)

· DisplayPath: (path of where display executables are located)

· NiPath: (path of where usc_ni executable is located)

· MdsServerFile: (path to find name of the MDS Server)

· MdspecsFile: (path of where the mdspecs.dat file is located)

The ct_pathsub object uses Ui UDS function calls.

USC Simulation dialog box (ct_simmenu) Object

The Sim Button appears on the USC Term’s main window, and when pressed, the dialog box pops up displaying the following items:

· NMC

When this “NMC” button is pressed, the “NMC Control Panel” simulator display will pop up showing the following items:

· NMC Name: (NMC functional address)

· Publish: (publish monitor data --On/Off)

· DssList:

· SpacecraftNumber:

· PassNumber:

· SimTimeOffset:

This NmcSimulatorSubdisplay is only available if the NMC Mode is “Standalone”.

The ct_simmenu object uses Smc(3) and Ui UDS function calls.

USC Log Control dialog box (ct_logmenu) Object

The Log Button appears on the USC Term’s main window, and when pressed, the dialog box pops up displaying the following items:

· USC Log Mode

· Term Log Mode

When either “USC Log Mode” or “Term Log Mode” buttons are pressed, the following panel will pop up showing the following items:

· FATAL

· WARNING

· DEFAULT

· DEBUG_L1

· DEBUG_L2

· DEBUG_L3

· DEBUG_L4

One of these items may then be picked to set the log mode required.

The ct_logmenu object uses Ui UDS function calls.

SECTION 19
USC Diagnostic Terminal (USC_DIAG) task

The Diagnostic Terminal (DIAG) task consists of 5 major objects: the Command Panel (Cmd), Switch Panel (Swt), Interlock Panel (Int), Status Panel (Sts), and Monitor and Control Proxy (Mc) objects. The functionality of DIAG task is divided into two processes: update and user-action.

The update process will be initiated by Monitor and Control Proxy (Mc) object. Every time Monitor and Control (Mc) object receives a new message from USC_MC task, it updates the switch settings through UscDevice library and issues the nexus signal DtMcNEW_DATA. The DtMcNEW_DATA is observed and will be picked-up by Switch Panel (Swt), Interlock Panel (Int) and Status Panel (Sts) objects. Each of these objects then reads the new data using UscDevice library and updates their own Widget data appropriately (i.e. Switch list, interlock list, etc). The update process ends after all panels are updated and will be initiated again when a new message is received from USC_MC task.

The user-action process gets initiated by keyboard or mouse events. The user can interact with Command Panel (Cmd) through it’s buttons or diagnostic menu, Switch panel (Swt) through it’s buttons or selection table, Interlock Panel (Int) through it’s buttons. However, only the command Panel (Cmd) interactions are considered a task user-action process initiator. All other user type events will be used by objects to internally change their state or viewing mode. When a user pushes one of the command panel buttons or selects a command from diagnostic menu, the Command Panel (Cmd) object sends a Nexus Message DtCMD_COMMAND. The Monitor and Control Proxy (Cm) is the observer of this message. When Cm object receives DtCMD_COMMAND, it will generate a proper command and sends it to USC_MC task. The user-action process ends by sending a message to USC_MC task and will be re-initiated by another keyboard/mouse events. Note: For the diagnostic nature of USC_DIAG task, the processes of this task are not designed to be closed loop. The user-action process and update process are completely independent, so USC_DIAG task will not wait for the USC_MC to respond to each command sent from USC_DIAG task.

Graphical User Interface
The graphical user interface (GUI) of USC_DIAG task is made of Xt/Motif/Ui Widgets organized in a Widget Hierarchy with the main window at the top. The main WorkForm() and some application general Widgets (Menu, Toolbar, etc) are made by the main module. The lower level Widgets in the hierarchy are made by the panel object that associates with those Widgets. Diagram 8-1 shows the Widget hierarchy of USC_DIAG task.
[image: image9.png]
Diagram 8-1: USC_DIAG Widget Hierarchy

APPENDICIES

APPENDIX A
RESOURCE FILE EXMAPLE
NmcMode = Standalone;

DsnSite = uscdev;

DssNum = 34;

DssFacilityCode = 255;

DssSubFacilityCode = 255;

DssNascomSrcCode = 255;

FuncName = /fa/uscdev/usc34;

DisplayPath = /home/lsmanalo/ccg/CCG/current/usd/bin;

MdspecsFile = /home/lsmanalo/ccg/CCG/current/usd/data/mdspecs.dat;

PhysDir = /.:/dsn/test/usc/lsmanalo/;

HostAddress = localhost;

DefaultMdsServerFile = /home/lsmanalo/ccg/local/tables/mdsServerFile;

DefaultNameServerFile = /nmcfs/share/cs/serverlists/Local_NameServers_Config_File;

MdsServerFile = /home/lsmanalo/ccg/local/tables/MDSServerList;

NameServerFile = /home/lsmanalo/ccg/local/tables/nameserver_file;

SiteDeviceFile = /home/lsmanalo/ccg/local/tables/site/dss34.device.pvl;

SiteSimFile = /home/lsmanalo/ccg/local/tables/site/dss34.sim.pvl;

LogDirMaxBytes = 4194304;

LogMode = DEBUG_L3;

SimMode = On;

NiPath = /home/lsmanalo/ccg/CCG/current/usc/bin/usc_ni;

TmPath = /home/lsmanalo/ccg/CCG/current/usc/bin/usc_tm;

ExPath = /home/lsmanalo/ccg/CCG/current/usc/bin/usc_ex;

PurgeLogCmd = /home/lsmanalo/ccg/CCG/current/usc/bin/usc_purge_log;

RestartLimit = 10;

RestartPeriod = 15;

TimeoutLogCheck = 600;

TimeoutLogPurge = 3600;

TimeoutPing = 5;

TimeoutReset = 5;

TimeoutHang = 45;

TimeoutStart = 15;

TimeoutSafety = 30;

APPENDIX B
DEVICE FILE: DEVICE OBJECT EXMAPLE

OBJECT = Device /* X-Band Horn device object */

 NAME = XHORN; /* up to 8 character name of device */

 DESCP = "X Band Horn"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 1; /* number of physical connections on the horn */

 BITMAP = horn;/* A picture of the horn (horn.xbm) This is default for display*/

 DEFAULTINHIB = 0; /* This device is not inhibited (locked) */

 BAND = X; /* This horn is for X-Band */

 TYPE = Horn; /* Expects the specification object to be of type horn */

 DEFAULTSTATUS = 0; /* When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /* qualifier None */

 OBJECT = Specs /* Horn Specification object */

 TYPE = Horn; /* This will go away--duplicate */

 OUTPUT_PORT = 0; /* horn port */

 END_OBJECT /* end of Horn specification */

 SIMMODE = OFF; /* simulation OFF */

 END_OBJECT /* end of X-Band Horn device object */

 OBJECT = Device /* S-Band Horn device object */

 NAME = SHORN; /* up to 8 character name of device */

 DESCP = "S Band Horn"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 1; /* number of physical connections on the horn */

 BITMAP = horn; /* A picture of the horn (horn.xbm) This is default for display */

 DEFAULTINHIB = 0; /* This device is not inhibited (locked) */

 BAND = S; /* This horn is for S-Band */

 TYPE = Horn; /* Expects the specification object to be of type horn */

 DEFAULTSTATUS = 0; /* When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /* qualifier None */

 OBJECT = Specs /* Horn specification object */

 TYPE = Horn; /* This will go away -- duplicate */

 OUTPUT_PORT = 0; /* horn port */

 END_OBJECT /* end of horn specification */

 SIMMODE = OFF; /* simulation OFF */

 END_OBJECT /* end of S-Band horn device object */

 OBJECT = Device /* X-Band polarizer device object */

 NAME = XPLRSR; /* up to 8 character name of device */

 DESCP = "X band Polarizer"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 3; /* number of physical connections on the polarizer */

 BITMAP = polarizer; /* A picture of the polarizer (polarizer.xbm). This is default for display*/

 DEFAULTINHIB = 0; /* This device is not inhibited (locked) */

 BAND = X; /* This polarizer is for X-Band */

 TYPE = polarizer; /* Expects the specification object to be of type polarizer */

 DEFAULTSTATUS = 0; /*When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /* qualifier None */

 OBJECT = Specs /* Polarizer Specification object */

 TYPE= Polarizer; /* This will go away -- duplicate */

 MIXED_PORT = 0; /* Polarizer ports--0,1,2 */

 RCP_PORT = 1;

 LCP_PORT = 2;

 END_OBJECT /* end of polarizer specification */

 SIMMODE = OFF; /* simulation OFF */

 END_OBJECT /* end of X-Band Polarizer device object */

 OBJECT = Device /* S-Band Polarizer device object */

 NAME = SPLRSR; /* up to 8 character name of device */

 DESCP = "S band Polarizer"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 3; /* number of physical connections on the polarizer */

 BITMAP = polarizer; /* A picture of the polarizer (polarizer.xbm). This is default for display */

 DEFAULTINHIB = 0; /* This device is not inhibited (locked) */

 BAND = S; /* This polarizer is for S-Band */

 TYPE = polarizer; /* Expects the specification object to be of type polarizer */

 DEFAULTSTATUS = 0; /* When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /* qualifier None */

 OBJECT = Specs /* Polarizer Specification object */

 TYPE= polarizer; /* This will go away--duplicate */

 MIXED_PORT = 0; /* polarizer ports--0,1,2 */

 RCP_PORT = 1;

 LCP_PORT = 2;

 END_OBJECT /* end of polarizer specification */

 SIMMODE = OFF; /* simulation OFF */

 END_OBJECT /* end of S-Band polarizer device object */

 OBJECT = Device; /* X-Band polarizer switch device object */

 NAME = S23; /* up to 8 character name of device */

 DESCP = "X Polarizer Switch"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 4; /* number of physical connections on the switch */

 BITMAP = 2posswtl; /* A picture of the 2-way switch (2posswtl.xbm) This is default for display. */

 DEFAULTINHIB = 0; /* This switch is not inhibited (locked) */

 BAND = X; /* This is a X-Band switch */

 TYPE = Switch; /* Expects the specification object to be of type switch */

 DEFAULTSTATUS = 0; /*When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /*qualifier None */

 OBJECT = Specs /* Switch Specification object */

 TYPE = Switch; /* This will go away--duplicate */

 NUMBER_OF_POSITIONS = 2; /* This is a 2-way switch */

 OBJECT = Position_0 /* Switch position A object */

 OPTO_CMD_MOD = 188; /* opto mux board (module) address */

 OPTO_CMD_POS = 0; /* digital output module number for position A */

 OPTO_IND_MOD = 188; /* opto mux board (module) address */

 OPTO_IND_POS = 1; /* digital input module number for position A */

 CON0 = 1; /* On the switch, Port 0 is connected to Port 1 */

 CON1 = 0; /* On the switch, Port 1 is connected to Port 0 */

 CON2 = 3; /* On the switch, Port 2 is connected to Port 3 */

 CON3 = 2; /* On the switch, Port 3 is connected to Port 2 */

 END_OBJECT /* end of switch position A object */

 OBJECT = Position_1 /* Switch position B object */

 OPTO_CMD_MOD = 188; /* opto mux board (module) address */

 OPTO_CMD_POS = 2; /* digital output module number for position B */

 OPTO_IND_MOD = 188; /* opto mux board (module) address */

 OPTO_IND_POS = 3; /* digital input module number for position B */

 CON0 = 3; /* On the switch, Port 0 is connected to Port 3 */

 CON1 = 2; /* On the switch, Port 1 is connected to Port 2 */

 CON2 = 1; /* On the switch, Port 2 is connected to Port 1 */

 CON3 = 0; /* On the switch, Port 3 is connected to Port 0 */

 END_OBJECT /* end of switch position B object */

 TIMEOUT = 1000; /* switch timeout after 1 second */

 END_OBJECT /* end of switch specification object */

 SIMMODE = OFF; /* real switch hooked up to CCG hardware—simulation OFF */

 END_OBJECT /* end of X-Band polarizer switch device object */

 OBJECT = Device; /* S-Band polarizer switch device object */

 NAME = S04; /* up to 8 character name of device */

 DESCP = "S Polarizer Switch"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 4; /* number of physical connections on the switch */

 BITMAP = 2posswtl; /* A picture of the 2-way switch (2posswtl.xbm) This is default for display */

 DEFAULTINHIB = 0; /* This switch is not inhibited (locked) */

 BAND = S; /*This is a S-Band Switch */

 TYPE = Switch; /* Expects the specification object to be of type switch */

 DEFAULTSTATUS = 0; /* When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /* qualifier None */

 OBJECT = Specs /* Switch specification object */

 TYPE = Switch; /* This will go away--duplicate */

 NUMBER_OF_POSITIONS = 2; /* This is a 2-way switch */

 OBJECT = Position_0 /* Switch position A object */

 OPTO_CMD_MOD = 188; /* opto mux board (module) address */

 OPTO_CMD_POS = 4; /* digital output module number for position A */

 OPTO_IND_MOD = 188; /* opto mux board (module) address */

 OPTO_IND_POS = 5; /* digital input module number for position A */

 CON0 = 1; /* On the switch, Port 0 is connected to Port 1 */

 CON1 = 0; /* On the switch, Port 1 is connected to Port 0 */

 CON2 = 3; /* On the switch, Port 2 is connected to Port 3 */

 CON3 = 2; /* On the switch, Port 3 is connected to Port 2 */

 END_OBJECT /* end of switch position A object */

 OBJECT = Position_1 /* Switch position B object */

 OPTO_CMD_MOD = 188; /* opto mux board (module) address */

 OPTO_CMD_POS = 6; /* digital output module number for position B */

 OPTO_IND_MOD = 188; /* opto mux board (module) address */

 OPTO_IND_POS = 7; /* digital input module number for position B */

 CON0 = 3; /* On the switch, Port 0 is connected to Port 3 */

 CON1 = 2; /* On the switch, Port 1 is connected to Port 2 */

 CON2 = 1; /* On the switch, Port 2 is connected to Port 1 */

 CON3 = 0; /* On the switch, Port 3 is connected to Port 0 */

 END_OBJECT /* end of switch position B object */

 TIMEOUT = 1000; /* switch timeout after 1 second */

 END_OBJECT /* end of switch specification object */

 SIMMODE = 1; /* This switch is set to simulated—no real H/W—simulation ON */

 END_OBJECT /* end of S-Band polarizer switch device object */

OBJECT = Device; /* Subreflector indicator device object */

 NAME = SBRFLCTR; /* up to 8 character name of device */

 DESCP = "Subreflector"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 0; /* number of physical connections on the subreflector */

 DEFAULTINHIB = 0; /* This indicator is not inhibited (locked) */

 TYPE = Indicator; /* Expects the specification object to be of type Indicator */

 DEFAULTSTATUS = 0; /*When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /*qualifier None */

 OBJECT = Specs /* Indicator Specification object */

 TYPE = Indicator; /* This will go away--duplicate */

 NUMBER_OF_POSITIONS = 6; /* This is a 6-way indicator */

 OBJECT = Position_0

 POS_NAME = “P1”

 OPTO_IND_MOD = 188; /* opto mux board (module) address */

 OPTO_IND_POS = 1; /* digital input module number for position 0 */

 END_OBJECT /* end of switch position A object */

 OBJECT = Position_1

 POS_NAME = “P2”

 OPTO_IND_MOD = 188; /* opto mux board (module) address */

 OPTO_IND_POS = 3; /* digital input module number for position 1 */

 END_OBJECT

 OBJECT = Position_2

 POS_NAME = “P3”

 OPTO_IND_MOD = 188; /* opto mux board (module) address */

 OPTO_IND_POS = 5; /* digital input module number for position 2 */

 END_OBJECT

 OBJECT = Position_3

 POS_NAME = “P4”

 OPTO_IND_MOD = 188; /* opto mux board (module) address */

 OPTO_IND_POS = 7; /* digital input module number for position 3 */

 END_OBJECT

 OBJECT = Position_4

 POS_NAME = “P1R”

 OPTO_IND_MOD = 188; /* opto mux board (module) address */

 OPTO_IND_POS = 9; /* digital input module number for position 4 */

 END_OBJECT

 OBJECT = Position_5

 POS_NAME = “P1L”

 OPTO_IND_MOD = 188; /* opto mux board (module) address */

 OPTO_IND_POS = 11; /* digital input module number for position 5 */

 END_OBJECT

 END_OBJECT /* end of indicator specification object */

 SIMMODE = OFF; /* real switch hooked up to CCG hardware—simulation OFF */

 END_OBJECT /* end of subreflector Indicator device object */

 OBJECT = Device /* X-Band ambient load device object */

 NAME = XAMB; /* up to 8 character name of device */

 DESCP = "Ambient load"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 1; /* number of physical connections on the ambient load */

 BITMAP = ambient; /* A picture of the ambient load */

 DEFAULTINHIB = 0; /* This device is not inhibited (locked) */

 BAND = X; /* This is a X-Band ambient load */

 TYPE = Ambient; /* Expects the specification object to be of type ambient load */

 DEFAULTSTATUS = 0; /* When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /*qualifier None */

 OBJECT = Specs /* Ambient Load Specification object */

 TYPE = Ambient; /* This will go away--duplicate */

 OUTPUT_PORT = 0; /* ambient load port */

 END_OBJECT /* end of ambient load specification object */

 SIMMODE = OFF; /* simulation OFF */

 END_OBJECT /* end of X-Band ambient load device object */

 OBJECT = Device /* X-Band LNA #1 device object */

 NAME = XLNA1; /* up to 8 character name of device */

 DESCP = "X Band LNA 1"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 2; /* number of physical connections on the LNA */

 BITMAP = lna1; /* A picture of the LNA (lna1.xbm). This is default for display */

 DEFAULTINHIB = 0; /* This device is not inhibited (locked) */

 BAND = X; /* This LNA is for X-Band */

 TYPE = LNA; /* Expects the specification object to be of type LNA */

 DEFAULTSTATUS = 0; /* When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /*qualifier None */

 OBJECT = Specs /* LNA specification object */

 TYPE = LNA; /* This will go away--duplicate */

 INPUT_PORT = 0; /* LNA input port */

 OUTPUT_PORT = 1; /* LNA output port */

 OPTO_STS_MOD = 0; /* Is status available ? */

 OPTO_STS_POS = 0; /* status line */

 END_OBJECT /* end of LNA specification object */

 SIMMODE = OFF; /* simulation OFF */

 END_OBJECT /* end of X-Band LNA #1 device object */

 OBJECT = Device /* X-Band diplexer device object */

 NAME = XDPLX; /* up to 8 character name of device */

 DESCP = "X Band DIPLEXER"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 3; /* number of physical connections on the diplexer */

 BITMAP = dplx; /* A picture of the diplexer (dplx.xbm). This is default for display */

 DEFAULTINHIB = 0; /* This device is not inhibited (locked) */

 BAND = X; /* This diplexer is for X-Band */

 TYPE = Diplexer; /* Expects the specification object to be of type diplexer */

 DEFAULTSTATUS = 0; /* When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /* qualifier None */

 OBJECT = Specs /* Diplexer Specification object */

 TYPE = Diplexer; /* This will go away--duplicate */

 MIXED_PORT = 0; /* Diplexer Ports--0,1,2 */

 RCV_PORT = 1;

 TX_PORT = 2;

 END_OBJECT /* end of diplexer specification */

 SIMMODE = OFF; /* simulation OFF */

 END_OBJECT /* end of X-Band diplexer device object */

 OBJECT = Device /* X-Band transmitter device object */

 NAME = X20K; /* up to 8 character name of device */

 DESCP = "X Band 20kW TXR"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 1; /* number of physical connections on the transmitter */

 BITMAP = txr; /* A picture of the transmitter (txr.xbm). This is default for display */

 DEFAULTINHIB = 0; /* This device is not inhibited (locked) */

 BAND = X; /* This transmitter is for X-Band */

 TYPE = TXR; /* Expects the specification object to be of type transmitter */

 DEFAULTSTATUS = 0; /* When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /* qualifier None */

 OBJECT = Specs /* Transmitter Specification object */

 TYPE = TXR; /* This will go away--duplicate */

 OUTPUT_PORT = 0; /* transmitter output port */

 CRIT_FILE_NAME = dss34.crit.x20k.pvl

 END_OBJECT /* end of transmitter specification object */

 SIMMODE = OFF; /* simulation OFF */

 END_OBJECT /* end of X-Band transmitter device object */

 OBJECT = Device /* S-Band water load device object */

 NAME = SWTR; /* up to 8 character name of device */

 DESCP = "Water load"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 1; /* number of physical connections on the water load */

 BITMAP = wtr; /* A picture of the water load (wtr.xbm). This is default for display. */

 DEFAULTINHIB = 0; /* This device is not inhibited (locked) */

 BAND = S; /* This water load is for S-Band */

 TYPE = Water_Load; /* Expects the specification object to be of type water load */

 DEFAULTSTATUS =0; /* When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /* qualifier None */

 OBJECT = Specs /* Water load specification object */

 TYPE = Water_Load; /* This will go away -- duplicate */

 INPUT_PORT = 0; /* water load input port */

 END_OBJECT /* end of water load specification object */

 SIMMODE = OFF; /* simulation OFF */

 END_OBJECT /* end of S-Band water load device object */

 OBJECT = Device /* X-Band RCV Select Output device object */

 NAME = XOUT1; /* up to 8 character name of device */

 DESCP = "X Band OUT 1"; /* up to 25 character description of device */

 NUMBER_OF_CONNECTIONS = 1; /* number of physical connections on the ouput device */

 BITMAP = output; /* A picture of the output device (output.xbm). This is default for display */

 DEFAULTINHIB = 0; /* This device is not inhibited (locked) */

 BAND = X; /* This output device is for X-Band */

 TYPE = Output; /* Expects the specification object to be of type output */

 DEFAULTSTATUS = 0; /*When first initialized, status will be Out of Service */

 DEFAULTSTATUSQUAL = 0; /* qualifier None */

 OBJECT = Specs /* Output specification object */

 TYPE = Output; /* This will go away -- duplicate */

 OUTPUT_NUMBER = 0; /* which output of 1-8 ? */

 SUBSYSTEM = BVR; /* Output device -- to Block V RCVR */

 INPUT_PORT = 0; /* input port */

 END_OBJECT /* end of output specification object */

 SIMMODE = OFF; /* simulation OFF */

 END_OBJECT /* end of X-Band RCV Select Output device object */

END_OBJECT /* end of antenna site */
APPENDIX C
DEVICE FILE: LINK OBJECT EXMAPLE

OBJECT = Link

 NAME = L0; /* up to 8 character name */

 DESCP = "Link 0"; /* up to 63 character description */

 DEV1 = XHORN; /* device one name up to 8 characters-- horn->polarizer */

 CON1 = 0; /* Port 0 of horn goes to Port 0 of polarizer */

 DEV2 = XPLRSR; /* device two name up to 8 characters */

 CON2 = 0; /* Port 0 of polarizer goes to Port 0 of Horn */

 BAND = 0; /* Band unknown */

 END_OBJECT
APPENDIX D
 DEVICE FILE: DISPLAY OBJECT EXAMPLE

OBJECT = Display

 NAME = XMAP /* up to 8 character display name */

 DESCP = "X Band RF Signal Path" /* up to 64 character description of display*/

 FileName = "dss34.display.xmap.pvl"; /* display file name can be 254 chars. */

END_OBJECT

APPENDIX E
DISPLAY FILE EXMAPLE

OBJECT = Display

 OBJECT = Device

 DEVICE = XHORN /* up to 8 character name of horn */

 CENTER_X = 80; /* x, y position of horn on the display */

 CENTER_Y = 10;

 ROTATION = 0; /* 0 degree clockwise rotation (orientation of horn) */

 ZOOM = 1.000000; /* make 1 times original size (ratio) */

 STYLE = NOLABEL|NORESIZE; /*do not show label, do not allow resize */

 CONNECTION_1 = 1; /*connect horn at mid bottom portion */

 END_OBJECT

 OBJECT = Device

 DEVICE = XPLRSR /* up to 8 character name of polarizer */

 CENTER_X = 80; /* x, y position of polarizer on the display */

 CENTER_Y = 200;

 ROTATION = 0; /* 0 degree clockwise rotation (orientation of polarizer) */

 ZOOM = 1.000000; /* make 1 times original size (ratio) */

 STYLE = NOLABEL|NORESIZE; /* do not show label, do not allow resize */

 CONNECTION_1 = 0; /* connect polarizer at mid top */

 CONNECTION_2 = 2; /* connect polarizer at mid right */

 CONNECTION_3 = 3; /* connect polarizer at mid left */

 END_OBJECT

 OBJECT = Device

 DEVICE = S23 /* up to 8 character name of switch */

 CENTER_X = 80; /* x, y position of switch on the display */

 CENTER_Y = 400;

 ROTATION = 0; /* 0 degree clockwise rotation (orientation of switch) */

 ZOOM = 1.000000; /*make 1 times original size (ratio) */

 STYLE = NONOLABEL|NORESIZE; /* show label */

 CONNECTION_1 = 0; /* connect switch at mid top */

 CONNECTION_2 = 2; /* connect switch at mid right */

 CONNECTION_3 = 1; /* connect switch at mid bottom */

 CONNECTION_4 = 3; /* connect switch at mid left */

 END_OBJECT

 OBJECT = Device

 DEVICE = XAMB /* up to 8 character name of ambient load */

 CENTER_X = 680; /* x, y position of ambient load on the display */

 CENTER_Y = 580;

 ROTATION = 0; /* 0 degree clockwise rotation (orientation of ambient load) */

 ZOOM = 1.000000; /* make 1 times original size (ratio) */

 STYLE = NOLABEL|NORESIZE; /*do not show label */

 CONNECTION_1 = 3; /* connect ambient load at mid left */

 END_OBJECT

 OBJECT = Device

 DEVICE = XLNA1 /* up to 8 character name of low noise amplifier */

 CENTER_X = 770; /* x, y position of LNA on the display */

 CENTER_Y = 150;

 ROTATION = 0; /* 0 degree clockwise rotation (orientation of LNA) */

 ZOOM = 1.000000; /* make 1 times original size (ratio) */

 STYLE = NOLABEL|NORESIZE; /* do not show label, do not allow resize */

 CONNECTION_1 = 3; /* connect LNA at mid left */

 CONNECTION_2 = 2; /* connect LNA at mid right */

 END_OBJECT

 OBJECT = Device

 DEVICE = XDPLX /* up to 8 character name of diplexer */

 CENTER_X = 82; /* x, y position of diplexer on the display */

 CENTER_Y = 630;

 ROTATION = 0; /* 0 degree clockwise rotation (orientation of diplexer) */

 ZOOM = 1.000000; /* make 1 times original size (ratio) */

 STYLE = NOLABEL|NORESIZE; /* do not show label, do not allow resize */

 CONNECTION_1 = 0 /* connect diplexer at mid top */

 CONNECTION_2 = 2; /* connect diplexer at mid right */

 CONNECTION_3 = 1; /* connect diplexer at mid bottom */

 END_OBJECT

 OBJECT = Device

 DEVICE = X20K /* up to 8 character name of transmitter */

 CENTER_X = 603; /* x, y position of transmitter on the display */

 CENTER_Y = 860;

 ROTATION = 0; /* 0 degree clockwise rotation (orientation of transmitter) */

 ZOOM = 1.000000; /* make 1 times original size (ratio) */

 STYLE = 1; /* show label */

 CONNECTION_1 = 3; /* connect transmitter at mid left */

 END_OBJECT

 OBJECT = Device

 DEVICE = XWTR /* up to 8 character name of water load */

 CENTER_X = 649 /* x, y position of water load on the display */

 CENTER_Y = 723;

 ROTATION = 0; /* 0 degree clockwise rotation (orientation of water load) */

 ZOOM = 1.000000; /* make 1 times original size (ratio) */

 STYLE = NOLABEL|NORESIZE; /* do not show label, do not allow resize */

 CONNECTION_1 = 3; /* connect water load at mid left */

 OBJECT = Device

 DEVICE = XOUT1 /* up to 8 character name of output device */

 CENTER_X = 1373; /* x, y position of output on the display */

 CENTER_Y = 395;

 ROTATION = 0; ; /* 0 degree clockwise rotation (orientation of output) */

 ZOOM = 1.000000; /* make 1 times original size (ratio) */

 STYLE = 1; /*show label */

 CONNECTION_1 = 3; /* connect output device at mid left */

 END_OBJECT

END_OBJECT /* end of display object */

APPENDIX F
 CRITICAL PATH FILE EXAMPLE

 OBJECT =S400KBEAM /* S-Band 400 kW Transmitter beam is ON—Rule1 or 2 or 3 must be TRUE*/

 OBJECT = Condition1

 BEAM = ON;

 TOUT = HORN;

 RULE = Rule1;

 END_OBJECT

 OBJECT = Condition2

 BEAM = ON;

 TOUT = WTR;

 KEY = OVERRIDE;

 RULE = Rule2;

 END_OBJECT

 OBJECT = Condition3

 BEAM = ON;

 TOUT = WTR;

 KEY = OVERRIDE;

 RULE = Rule3;

 END_OBJECT

 OBJECT=Rule1 /* For Rule 1, Transmitter must be radiating out the horn and the hatch door closed */

 S06 = A; /* Switch 6 should be in position A */

 INT_CLOSE=Hatch_door; /* The hatch door should be closed */

 END_OBJECT

 OBJECT=Rule2 /* For Rule 2, Transmitter must be radiating in to the water load and the Door Overrride set */

 S06 = B; /* Switch 6 should be in position B */

 END_OBJECT

 OBJECT=Rule3 /* For Rule 3, Transmitter must be radiating in to the water load, Door override not set and hatch door closed */

 S06 = B; /* Switch 6 should be in position B */

 INT_CLOSED = Hatch_Door; /* The hatch door should be closed */

 END_OBJECT

 END_OBJECT
APPENDIX G
SIMULATION FILE EXAMPLE

OBJECT = SIM

 MOD188 = Enable; /* Opto mux board with address 188 is hooked up to hardware */

 MOD220 = Enable; /* Opto mux board with address 220 is hooked up to hardware */

 MOD110 = Disable; /* Opto mux board with address 110 is in simulated mode */

 MOD111 = Disable; /* Opto mux board with address 111 is in simulated mode */

 MOD112 = Disable; /* Opto mux board with address 112 is in simulated mode */

END_OBJECT
APPENDIX H
USER CONFIGURATION FILE EXMAPLE

OBJECT = myfavorite /* User configuration name /
 DESP= “ This is just a test user config file” ; /* file description */
 S01 = A; /*Want switch 1 to be set to position A */
 S05 = B; /*Want switch 5 to be set to position B */
 S07 = A; /*Want switch 7 to be set to position A */
END_OBJECT

The CNF Operator Directive can be used to execute this user configuration in real time. (Example: CNF myfavorite)
APPENDIX I
 SUPPORT DATA FILE EXAMPLE

** USC_SC_DSS USC_CAP.SCN

*1 CREATED=01/289 00:00:00 MOD_NSS=01/289 22:30:14 MOD_DSS=01/290 09:30:00

*2 SPEC_FILE=usc_sc_dss.dfs REV=01.00.00

*#Downlink/Uplink USC site data table

*@ END OF HEADER

DSS Site: 14

SCN Spacecraft: 82

DOWNLINK(1) Band: S Source: HORN Polarization: RCP Path: DPLX Lna: 1;

UPLINK(1) Band: S Polarization: RCP TxrName: TXRS20k TxrOut: HORN;

DOWNLINK(2) Band: X Source: HORN Polarization: RCP Path: DPLX Lna: 1;

UPLINK(2) Band: X Polarization: RCP TxrName: TXRS20k TxrOut: HORN;

DOWNLINK(3) Band: L Source:NA Polarization: NA Path: NA Lna: 1;

UPLINK(3) Band: L Polarization: NA TxrName: NA TxrOut: NA;

= END =

APPENDIX J
libUsc: Man page

NAME

Usc -- Introduction to libUsc

SYNOPSIS

none.

DESCRIPTION

The USC library, libUsc, contains code that can be used by all USC tasks.

The following alibraries are provided by the libUsc:

UscLocal(3)

Allows applications to find the UPL_LOCAL directory tree.

UscLog(3)

Allows logging of messages by libUpl using an application-specified function.

UscParm(3)

Reads, parses, and validates the UPL initialization file, and provides access to the file's parameters.

UscEvent(3)

Convenience function for sending events via CmnNi(3).

UscScTable(3)

Parser of Uplink Spacecraft (UPL_SC) tables.

UscCheckpoint(3)

API for reading and writing task checkpoint files.

UscApp(3)

Standard initialization code required by most USC tasks.

UscHw(3)

Allows applications to read and write CCG H/W status bits and command lines.

UscDevice(3)

General UWV device database code required by most USC tasks

UscPvl(3)

Parametr Value Language (PVL) parser.

AUTHOR

Barzia Tehrani

HISTORY

Initial Release.

APPENDIX K
UscApp: Man page

NAME

UscApp -- Application Initialization for USC tasks

SYNOPSIS

 ... -lUscApp -lCmnApp -lVc -lCu ...

 #include <Usc.h>

 void UscAppInit (UscAppParmsStruct* userParms);

 Boolean UscAppInitialized (void);

 void UscAppLoop (void);

 void UscAppReset (const char* fmt, ...);

 VcLoopId UscAppLoopId (void);

 VcId UscAppVcId (void);

MT-LEVEL

Unsafe. Only one thread should use UscApp(3).

DESCRIPTION

UscApp(3) is a layer above CmnApp(3) customized for USC tasks. In general, it streamlines many of the standard initialization steps doneby any USC Software task. It performs all the functions of CmnApp(3) plus the following:

· Reads and loads the site specific configuration files.

· Initializes the UscDevice(3).

UscApp(3) defines the following functions:

UscAppInit(parms);

This function initializes UscApp(3); after it has been called, any of the other functions may be used. It performs logging, so CmnLogInit() (see CmnLog(3)) must be called first.

UscAppInit() always calls UscDeviceInit(), VcLoopInit() and VcInit() to read site specific files, initialize the Vc(3) event loop and register the application's Vc(3) logical name. Beyond that, its behavior depends on the user-defined parms.

parms is a pointer to a structure containing the UscApp(3) and CmnApp(3) configuration parameters. This structure and the data it contains must remain available for the lifetime of the application; UscAppInit() does not copy the information. The structure is as follows:

 typedef struct UscAppParmsStruct {

 CmnAppParmStruct cmnParm;

 char* uscSiteName; /* The name of antenna site */

 } UscAppParmsStruct;

CmnAppParmStruct is used within UscAppParmStruct, so that each struct can be modified independently without requiring modification to each one of the laibraries and/or application software. For this reason, the parms struct should always be zeroed before the fields are filled in; this guarantees that any parameters which are not explicitly initialized will take their default values.<p>

The parameters are as follows:

· cmnParm is the parameter to initialize CmnApp(3). For details, see CmnApp(3) manpage.

· uscSiteName is the name of the antenna site or NULL. If NULL, the site name is assumed to be ``DSSxx'' where xx is the Dss number.

UscAppInitialized();

Returns TRUE if UscAppInit() has been called, and FALSE otherwise. This is a bitwise and(&) of UscDeviceInitialized() and CmnAppInitialized().

UscAppLoop();

This function is just like CmnAppLoop().

UscAppReset(fmt, ...);

This function is just like CmnAppReset().

UscAppLoopId();

This function is just like CmnAppLoopId().

UscAppVcId();

This function is just like CmnAppVcId().

SIGNALS

UscApp(3) sends no CuNexus(3) signals at this time.

EXAMPLES

First, the parms struct is defined, usually as a static variable at file scope:

 static UscAppParmsStruct parms;

In the main routine, CmnLog(3) is initialized as soon as possible, so that debugging log messages can be written:

 /* argv[1] is the initial log directory received from TM */

 CmnLogInit("M", argv[1], "my_task.log");

 CmnLogWrite(CuLOG_DEFAULT, "my_task is executing!");

Next, parms is filled in, and CmnAppInit() is called. In this case, CmnAppInit() is being allowed to connect to the TM and NI tasks, handle SIGINT and SIGTERM, and to make the application halt when the TM task disconnects.

 parm.cmnParms.appLogicalName = "MY_TASK";

 parm.cmnParms.vcDir = "./vc";

 parm.cmnParms.tmLogicalName = "MY_TM";

 parm.cmnParms.niLogicalName = "MY_NI";

 parm.cmnParms.handleSignals = TRUE;

 parm.cmnParms.haltWithTM = TRUE;

 parm.uscSiteName = "MY_SITE";

 UscAppInit(&parms);

The application will then go on to initialize its other modules; finally, when initialization is complete it will enter the Vc(3) event loop:

 UscAppLoop();

SEE ALSO

CmnApp(3), CmnLog(3), CmnTm(3), CmnNi(3), Vc(3).

AUTHOR

Barzia Tehrani

HISTORY

This module depends on the Uplink Common Software and AMMOS TC&DM TCS subsystem. The CMN and TCS header files and binary libraries must be available at build time and at run time.

This module is not yet implemented....

APPENDIX L
UscDevice: Man page

NAME

UscDevice -- USC Microwave Devices

SYNOPSIS

 #include <usc_share.h>

 void UscDeviceInit (char*);

 Boolean UscDeviceInitialized (void);

 UscDevicePtr UscDeviceFindDevice (const char*);

 UscDevicePtr UscDeviceGetFirstDevice (UscDeviceCursor*);

 UscDevicePtr UscDeviceGetDeviceAt (UscDeviceCursor);

 UscDevicePtr UscDeviceGetNextDevice (UscDeviceCursor*);

 UscDevicePtr UscDeviceGetPrevDevice (UscDeviceCursor*);

 long UscDeviceGetDeviceCount (void);

 Boolean UscDeviceUpdateDevice (UscDevicePtr);

 Boolean UscDeviceUpdateDeviceList (UscDevicePtr*, int);

 UscDeviceCallbackHandle UscDeviceDeviceUpdateRegister (CuCallbackProc,UscDevicePtr, void*);

 CuCallbackHandle UscDeviceDeviceUpdateRegisterAll(CuCallbackProc,void*);

 void UscDeviceDeviceUpdateUnregister (UscDeviceCallbackHandle);

 UscLinkPtr UscDeviceFindLink (const char*);

 UscLinkPtr UscDeviceGetFirstLink (UscDeviceCursor*);

 UscLinkPtr UscDeviceGetLinkAt (UscDeviceCursor);

 UscLinkPtr UscDeviceGetNextLink (UscDeviceCursor*);

 UscLinkPtr UscDeviceGetPrevLink (UscDeviceCursor*);

 long UscDeviceGetLinkCount (void);

 Boolean UscDeviceUpdateLink (UscLinkPtr);

 Boolean UscDeviceUpdateLinkList (UscLinkPtr*, int);

 UscDeviceCallbackHandle UscDeviceLinkUpdateRegister (CuCallbackProc,UscLinkPtr, void*);

 UscDeviceCallbackHandle UscDeviceLinkUpdateRegisterAll (CuCallbackProc,void*);

 void UscDeviceLinkUpdateUnregister (UscDeviceCallbackHandle);

 UscDispPtr UscDeviceFindDisp (const char*);

 UscDispPtr UscDeviceGetFirstDisp (UscDeviceCursor*);

 UscDispPtr UscDeviceGetDispAt (UscDeviceCursor);

 UscDispPtr UscDeviceGetNextDisp (UscDeviceCursor*);

 UscDispPtr UscDeviceGetPrevDisp (UscDeviceCursor*);

 long UscDeviceGetDispCount (void);

 void UscDeviceInitDisp (char*);

 Boolean UscDeviceDispInitialized (void);

 UscDispDevPtr UscDeviceFindDispDev (UscDevicePtr);

 UscDispDevPtr UscDeviceGetFirstDispDev (UscDeviceCursor*);

 UscDispDevPtr UscDeviceGetDispDevAt (UscDeviceCursor);

 UscDispDevPtr UscDeviceGetNextDispDev (UscDeviceCursor*);

 UscDispDevPtr UscDeviceGetPrevDispDev (UscDeviceCursor*);

 long UscDeviceGetDispDevCount (void);

MT-LEVEL

Unsafe. Only one thread should use UscDevice(3).

DESCRIPTION

UscDevice(3) is the main device/link database for USC tasks; it provides access to all UWV devices such as switches, polarizers, diplexers and etc, and all UWV links such as waveguides between switches and polarizers, or waveguides between two switches.

The UscDevice(3) handles four type of elements:

1) Site Devices (same as UWV devices, or devices):

This type of elements represent all commandable and none-commandable devices that can be placed in the signal path between the Antenna horn and microwve output in downlink side, or between transmitter and antenna horn in uplink side. This includes all switches, interlocks, indicators, polarizers, diplexers, outputs, LNAs, loads, transmitters, and etc. Each device contains information about device specifications, connections, positions, ports, status, and etc. Site devices are defined by UscDeviceStruct and a quick pointer type UscDevicePtr.

2) Links:

This type of elements represent all communication links between two site device. This includes all microwave waveguids and coax cables. Each link contains information about the connectivity of one specific communication link. Links are defined by UscLinkStruct and a quick pointer type UscLinkPtr.

3) Signal Path Displays (same as MAP displays, or displays)

This type of elements represent signal path displays present at each site. This includes XMAP, SMAP, XMPI, SMPI, KMAP, KMPI, and etc. Each MAP Display contains information about display file, display name, and display title. Signal Path Displays are defined by UscDispStruct and a quick pointer UscDispPtr.

4) Display Devices (same as DispDevs):

This type of elements represents devices on each MAP display. Each DispDev contains information about device position on the display, orientation, display related specifications, and etc. Display Devices are defined by UscDispDevStruct and a quick pointer UscDispDevPtr.

The UscDevice(3) library functions can be used for the following purposes:

1) To find a pointer to certain site devices, links, displays, or display devices.

See:

UscDeviceFindDevice(), UscDeviceFindLink(), UscDeviceFindDisp(), UscDeviceFindDispDev()

UscDeviceGetFirstDevice(), UscDeviceGetNextDevice(), UscDeviceGetPrevDevice(), UscDeviceGetDeviceAt()

UscDeviceGetFirstLink(), UscDeviceGetNextLink(), UscDeviceGetPrevLink(), UscDeviceGetLinkAt()

UscDeviceGetFirstDisp(), UscDeviceGetNextDisp(), UscDeviceGetPrevDisp(), UscDeviceGetDispAt()

UscDeviceGetFirstDispDev(), UscDeviceGetNextDispDev(), UscDeviceGetPrevDispDev(), UscDeviceGetDispDevAt()

2) To notify and receive notification from other modules when one or more devices are being updated.

See:

UscDeviceDeviceUpdateRegister(), UscDeviceDeviceUpdateRegisterAll(), UscDeviceDeviceUpdateUnregister()

UscDeviceUpdateDevice(), UscDeviceUpdateDeviceList()

UscDeviceLinkUpdateRegister(), UscDeviceLinkUpdateRegisterAll(), UscDeviceLinkUpdateUnregister()

UscDeviceUpdateLink(), UscDeviceUpdateLinkList()

During initialization UscDeviceInit() reads the site specific configuration file and generates the data structures for devices, links and display. database. The UscDeviceInitDisp() reads display file and generates the data structure of Display Devices.

UscDevice(3) defines the following types:

 typedef CuListCursor UscDeviceCursor;

 typedef enum UscBandEnum

 {

 UscBND_UNK = 0,

 UscBND_L = 1,

 UscBND_S = 2,

 UscBND_X = 4,

 UscBND_K = 8

 } UscBandEnum;

 typedef enum UscValueTypeEnum

 {

 UscTYPE_UNKNOWN,

 UscTYPE_STRING,

 UscTYPE_SHORT,

 UscTYPE_LONG,

 UscTYPE_DOUBLE,

 UscTYPE_NUMERIC,

 UscTYPE_DATETIME,

 UscTYPE_OBJECT

 } UscValueTypeEnum;

 typedef enum UscDeviceTypeEnum

 {

 UscDEV_SWITCH,

 UscDEV_LNA,

 UscDEV_TXR,

 UscDEV_WATERLOAD,

 UscDEV_AIRLOAD,

 UscDEV_AMBIENT,

 UscDEV_HORN,

 UscDEV_SIGGEN,

 UscDEV_DIPLEXER,

 UscDEV_POLARIZER,

 UscDEV_NODE,

 UscDEV_OUTPUT,

 UscDEV_POSITION,

 UscDEV_OTHER,

 UscDEV_DEVICE,

 UscDEV_LINK,

 UscDEV_DISPLAY,

 UscDEV_DISPDEV,

 UscDEV_UNKNOWN

 } UscDeviceTypeEnum ;

 typedef enum UscConPositionEnum

 {

 UscCON_MIDTOP,

 UscCON_MIDBOTTOM,

 UscCON_MIDRIGHT,

 UscCON_MIDLEFT,

 UscCON_ONETHIRDTOP,

 UscCON_ONETHIRDBOTTOM,

 UscCON_ONETHIRDRIGHT,

 UscCON_ONETHIRDLEFT,

 UscCON_TWOTHIRDTOP,

 UscCON_TWOTHIRDBOTTOM,

 UscCON_TWOTHIRDRIGHT,

 UscCON_TWOTHIRDLEFT

 } UscConPositionEnum;

 typedef enum UscPathEnum

 {

 UscPATH_DPLX,

 UscPATH_LONO,

 UscPATH_RADAR,

 UscPATH_OTHER

 } UscPathEnum;

 typedef enum UscPolarityEnum

 {

 UscPOL_UNK = 0, /* Polirized but unknown */

 UscPOL_LCP = 1, /* Only LCP */

 UscPOL_RCP = 2, /* Only RCP */

 UscPOL_NONE = 3 /* Both LCP and RCP */

 } UscPolarityEnum;

 typedef enum UscDispStyleEnum

 {

 UscDISP_NORMAL,

 UscDISP_LABEL

 } UscDispStyleEnum;

 typedef struct UscHwLineStruct

 {

 long modAddress;

 short modPosition;

 } UscHwLineStruct;

 typedef struct UscSwitchPositionStruct

 {

 UscHwLineStruct command;

 UscHwLineStruct indication;

 short connection[8];

 } UscSwitchPositionStruct;

 typedef struct UscSwitchStruct

 {

 short positionCount;

 UscSwitchPositionStruct position[8];

 short curPosition;

 short cmdPosition;

 long timeout;

 } UscSwitchStruct;

 typedef struct UscLnaStruct

 {

 char typeName[25];

 short inputPort;

 short outputPort;

 Boolean bIsStatusAvailable;

 UscHwLineStruct statusLine;

 } UscLnaStruct;

 typedef struct UscPolarizerStruct

 {

 short mixedPort;

 short lcpPort;

 short rcpPort;

 } UscPolarizerStruct;

 typedef struct UscTxrStruct

 {

 short outputPort;

 } UscTxrStruct;

 typedef struct UscWtrStruct

 {

 short inputPort;

 } UscWtrStruct;

 typedef struct UscAirStruct

 {

 short inputPort;

 } UscAirStruct;

 typedef struct UscAmbientStruct

 {

 short outputPort;

 } UscAmbientStruct;

 typedef struct UscSiggenStruct

 {

 short outputPort;

 } UscSiggenStruct;

 typedef struct UscHornStruct

 {

 short outputPort;

 } UscHornStruct;

 typedef struct UscDiplexerStruct

 {

 short mixedPort;

 short txPort;

 short rxPort;

 } UscDiplexerStruct;

 typedef struct UscNodeStruct

 {

 short inputPort;

 short outputPort;

 } UscNodeStruct;

 typedef struct UscOutputStruct

 {

 short inputPort;

 char outputDevice[5];

 short outputNumber;

 } UscOutputStruct;

 typedef struct UscDeviceStruct

 {

 char name[9];

 char descp[26];

 short connectionCount;

 char bitmap[64];

 short inhibited;

 UscBandEnum band;

 UscDeviceTypeEnum type;

 short status;

 short statusQual;

 void* data;

 void* pubHandle;

 void* pubItems;

 long updateCount;

 short simMode;

 union {

 UscSwitchStruct swt;

 UscLnaStruct lna;

 UscPolarizerStruct polarizer;

 UscDiplexerStruct dplx;

 UscTxrStruct txr;

 UscWtrStruct wtr;

 UscAirStruct air;

 UscAmbientStruct amb;

 UscSiggenStruct siggen;

 UscHornStruct horn;

 UscNodeStruct node;

 UscOutputStruct output;

 } spec;

 } UscDeviceStruct;

 typedef UscDeviceStruct* UscDevicePtr;

 typedef struct UscLinkStruct

 {

 char name[9];

 char descp[64];

 char dev1Name[9];

 short con1;

 char dev2Name[9];

 short con2;

 UscPolarityEnum polarity;

 UscPathEnum path;

 UscBandEnum band;

 } UscLinkStruct;

 typedef UscLinkStruct* UscLinkPtr;

 typedef struct UscDispStruct

 {

 char name[9];

 char descp[65];

 char filename[255];

 } UscDispStruct;

 typedef UscDispStruct* UscDispPtr;

 typedef struct UscDispDevStruct

 {

 char device[9];

 UscDevicePtr devicePtr;

 short x;

 short y;

 short rotation;

 short zoom;

 short style;

 short eConn[8]; /* ConPositionEnum */

 } UscDispDevStruct;

 typedef UscDispDevStruct* UscDispDevPtr;

 typedef CuCallbackHandle UscDeviceCallbackHandle;

UscDevice(3) defines the following functions:

UscDeviceInit(deviceFile)

Initializes device database from deviceFile. For information about device file format refer to deviceFile(n) man page.

UscDeviceInitialized()

Returns TRUE if UscDevice(3) is initialized, otherwise returns FALSE.

UscDeviceInitDisp(dispName)

Initializes UscDevice(3) dispDevices for display dispName. For information about the format of displayFiles refer to DispFile(n) man page.

UscDeviceDispInitialized()

Returns TRUE id UscDevice(3) is initialized with a display, otehrwise returns FALSE.

UscDeviceFindDevice(name)

Returns the pointer to the site device with the name name, or NULL if no device is not found.

UscDeviceGetFirstDevice(*cursor)

Returns the pointer to the first site device in the list and updates the UscDeviceCursor cursor to point to the first device.

UscDeviceGetNextDevice(*cursor)

Returns the pointer to the device located after the cursor and updates the cursor. Returns NULL id cursor is pointing to the last device.

UscDeviceGetPrevDevice(*cursor)

Returns the pointer to the device located before the cursor and updates the cursor. Return NULL if cursor is pointing the the first device.

UscDeviceGetDeviceAt(cursor)

Return the pointer to teh site device located at the cursor position whithout updating the cursor.Return NULL is cursor position is invalid.

UscDeviceGetDeviceCount()

Return the number of devices at the site.

UscDeviceUpdateDevice(devPtr)

Notifies UscDevice(3) that site device devPtr has updated. When this function is called, all callbacks registred to receives notification for devPtr, or for ALL_DEVICES will be called by UscDevice(3).

When callbacks are called, the call data in the form of UscDeviceDeviceUpdateCallbackStruct* will be send to the registered callback functions.

UscDeviceUpdateDeviceList(*devPtrList, n)

Notifies UscDevice(3) that n site devices in devPtrList has updated. When this function is called, all callbacks registred to receives notification for devices in devPtrList, or for ALL_DEVICES will be called by UscDevice(3) library.

When callbacks are called, the call data in the form of UscDeviceDeviceUpdateCallbackStruct* will be send to the registered callback functions.

UscDeviceDeviceUpdateRegister(proc, devPtr, client_data)

Registers callback proc to get update notification for devPtr. The proc should have the following prototype:

void proc (void* call, void* client);

When callbacks are called, the call will be a pointer to UscDeviceDeviceUpdateCallbackStruct and client will be the client_data passed in this function.

This function returns UscDeviceCallbackHandle which later can be used to unregister the callback proc.

UscDeviceDeviceUpdateRegisterAll(proc, client_data)

Registers callback proc to receive update notification when one or more site devices are updated. The proc prototype and data will be the same as UscDeviceDeviceUpdateRegister().

This function returns UscDeviceCallbackHandle which later can be used to unregister the callback proc.

UscDeviceDeviceUpdateUnregister(handle)

Unregisters the callback identified by handle.

UscDeviceFindLink(name)

Returns the pointer to the UWV link with the name name, or NULL if no link is not found.

UscDeviceGetFirstLink(*cursor)

Returns the pointer to the first UWV link in the list and updates the UscLinkCursor cursor to point to the first link.

UscDeviceGetNextLink(*cursor)

Returns the pointer to the link located after the cursor and updates the cursor. Returns NULL id cursor is pointing to the last link.

UscDeviceGetPrevLink(*cursor)

Returns the pointer to the link located before the cursor and updates the cursor. Return NULL if cursor is pointing the the first link.

UscDeviceGetLinkAt(cursor)

Return the pointer to teh UWV link located at the cursor position whithout updating the cursor.Return NULL is cursor position is invalid.

UscDeviceGetLinkCount()

Return the number of links at the site.

UscDeviceUpdateLink(devPtr)

Notifies UscDevice(3) that UWV link devPtr has updated. When this function is called, all callbacks registred to receives notification for devPtr, or for ALL_LINKS will be called by UscDevice(3).

When callbacks are called, the call data in the form of UscDeviceLinkUpdateCallbackStruct* will be send to the registered callback functions.

UscDeviceUpdateLinkList(*devPtrList, n)

Notifies UscDevice(3) that n UWV links in devPtrList has updated. When this function is called, all callbacks registred to receives notification for links in devPtrList, or for ALL_LINKS will be called by UscDevice(3).

When callbacks are called, the call data in the form of UscDeviceLinkUpdateCallbackStruct* will be send to the registered callback functions.

UscDeviceLinkUpdateRegister(proc, devPtr, client_data)

Registers callback proc to get update notification for devPtr. The proc should have the following prototype:

void proc (void* call, void* client);

When callbacks are called, the call will be a pointer to UscDeviceLinkUpdateCallbackStruct and client will be the client_data passed in this function.

This function returns UscDeviceCallbackHandle which later can be used to unregister the callback proc.

UscDeviceLinkUpdateRegisterAll(proc, client_data)

Registers callback proc to receive update notification when one or more UWV links are updated. The proc prototype and data will be the same as UscDeviceLinkUpdateRegister().

This function returns UscDeviceCallbackHandle which later can be used to unregister the callback proc.

UscDeviceLinkUpdateUnregister(handle)

Unregisters the callback identified by handle.

UscDeviceFindDisp(name)

Returns the pointer to the map display with the name name, or NULL if no display is not found.

UscDeviceGetFirstDisp(*cursor)

Returns the pointer to the first UWV display in the list and updates the UscDeviceCursor cursor to point to the first display.

UscDeviceGetNextDisp(*cursor)

Returns the pointer to the display located after the cursor and updates the cursor. Returns NULL id cursor is pointing to the last display.

UscDeviceGetPrevDisp(*cursor)

Returns the pointer to the display located before the cursor and updates the cursor. Return NULL if cursor is pointing the the first display.

UscDeviceGetDispAt(cursor)

Return the pointer to teh UWV display located at the cursor position whithout updating the cursor.Return NULL is cursor position is invalid.

UscDeviceGetDispCount()

Return the number of MAP displays at the site.

UscDeviceFindDispDev(name)

Returns the pointer to the display device with the name name, or NULL if no display device is not found.

UscDeviceGetFirstDispDev(*cursor)

Returns the pointer to the first UWV display device in the list and updates the UscDeviceCursor cursor to point to the first display device.

UscDeviceGetNextDispDev(*cursor)

Returns the pointer to the display device located after the cursor and updates the cursor. Returns NULL id cursor is pointing to the last display device.

UscDeviceGetPrevDispDev(*cursor)

Returns the pointer to the display device located before the cursor and updates the cursor. Return NULL if cursor is pointing the the first display device.

UscDeviceGetDispDevAt(cursor)

Return the pointer to teh UWV display device located at the cursor position whithout updating the cursor.Return NULL is cursor position is invalid.

UscDeviceGetDispDevCount()

Return the number of display devices at the site.

SIGNALS

UscDevice(3) sends no CuNexus(3) signals at this time.

SEE ALSO

UscHw(3) UscApp(3) CuCallbackList(3) CuList(3) CuLog(3) CuMalloc(3) CuStr(3).

AUTHOR

Barzia Tehrani

HISTORY

This module depends on the TC&DM Common Software.The TCS header files and binary libraries must be available at build time and at run time.

This module is not yet implemented....

APPENDIX M
UscHw: Man page

NAME

UscHw -- CCG H/W Interface Library

SYNOPSIS

 #include <Usc.h>

 void UscHwInit (char* siteName);

 Boolean UscHwInitialized (void);

 void UscHwConfig (void);

 void UscHwRegister (const char* deviceName, long msec,

 CuCallbacvProc deviceCB,

 void* clientData);

 void UscHwRegisterList (const char** deviceList, long msec,

 CuCallbackProc deviceCB,

 void* clientData);

 char** UscHwRegisterAll (long msec, CuCallbackProc deviceCB,

 void* clientData);

 void UscHwUnregister (const char* deviceName);

 void UscHwUnregisterList (const char** deviceList);

 void uscHwUnregisterAll (void);

 Boolean UscHwRead (const char* deviceName, int& position);

 Boolean UscHwMove (const char* deviceName, int position);

MT-LEVEL

Unsafe. Only one thread should use UscHw(3).

DESCRIPTION

UscHw(3) provides the connection to CCG H/W Optomux modules. During initialization, it opens the serial interface to Optomux network of CCG hardware. The UscHwConfig() is used to configure all Optomux modules for the proper inpout/output addressing. After that, the application software can register a callback for one or a set of switches or interlocks to get the status. The application software can also move a switch by calling UscHwMove() function.

UscHw(3) defines the following functions:

UscHwInit(siteName);

This function performs the initialization routine for UscHw library. It opens the serial connection and loads the site specific files.

Arguments:

· siteName is the null terminated string representing the Antenna Site name or NULL if default DSSxx is accepted.

UscHwInitialized();

This function returns TRUE if UscHw is initialized and FALSE otherwise.

UscHwConfig();

This function configures all Optomux input/output modules according to the site file loaded by UscHwInit(siteName).

UscHwRegister(deviceName, msec, deviceCB, clientData);

Registers deviceCB as a timeout callback; it will be called after at least msec miliseconds is elapsed. The deviceCB must have the following signiture:

 void deviceCB(void* call, void* client);

When it is called, the client argument will be the clientData passed to UscHardwareRegister() and the call argument will point the the following calback structure:

 typedef struct UscHwCallBackStruct {

 VcLoopId loopId; /* Application. */

 VcTimeoutId timeoutId; /* This timeout's ID */

 Boolean again; /* Set to TRUE to go again. */

 long msec; /* Previous msec's; reset for next time. */

 char* deviceName; /* Switch or Interlock Name. */

 short position; /* Switch or Interlock position number. */

 } UscHwCallBackStruct;

The again field will be set to FALSE; if the device read timeout should be rescheduled, set it to TRUE. msec contains the previous timeout duration; if you set again to TRUE, you can reset msec as well.

UscHwRegisterList(deviceList, msec, deviceCB, clientData);

Registers deviceCB as a timeout callback; it will be called after at least msec miliseconds is elapsed. The deviceCB must have the following signiture:

 void deviceCB(void* call, void* client);

When it is called, the client argument will be the clientData passed to UscHardwareRegister() and the call argument will point the the following calback structure:

 typedef struct UscHwListCallBackStruct {

 VcLoopId loopId; /* Application. */

 VcTimeoutId timeoutId; /* This timeout's ID */

 Boolean again; /* Set to TRUE to go again. */

 long msec; /* Previous msec's; reset for next time. */

 char** deviceName; /* Switch or Interlock name list. */

 short position[]; /* Switch or Interlock position list. */

 } UscHwListCallBackStruct;

The again field will be set to FALSE; if the device read timeout should be rescheduled, set it to TRUE. msec contains the previous timeout duration; if you set again to TRUE, you can reset msec as well.

UscHwRegisterAll(msec, deviceCB, clientData);

This function will call UscHwRegisterList(); the deviceList argument sent to that function will be the list of all switches and interlocks available in site specific file.

This function returns the pointer to the device list. This pointer is valid until it is unregiterd by UscHwUnregisterList() or UscHwUnregisterAll().

UscHwUnregister(deviceName);

This function unrgister deviceName registered by UscHwRegister(). It will not effect deviceName registered by UscHwRegisterList() or UscHwRegisterAll.

UscHwUnregisterList(deviceList);

This function unregister deviceList registered by UscHwRegisterList(). The deviceList pointer MUST eaxctly match the one used for registering. This function will not compair the contents of two list.

UscHwUnregisterAll();

This function unregister any deviceName already registerd by UscHwRegister(), UscHwRegisterist(), or UscHwRegisterAll().

UscHwRead(deviceName, position);

This function reads the position of deviceName Switch or Interlock and updates the position argument. If function failes, it will return FALSE and position argument will be unchanged.

UscHwMove(deviceName, position);

This function moves the deviceName Switch to the position position. If function fails, it will return FALSE, otherwise TRUE;

SIGNALS

UscHw(3) sends no CuNexus(3) signals at this time.

SEE ALSO

VcTimeout(3), UscDevice(3) CuCallbackList(3), CuLog(3), CuMalloc(3), CuStr(3).

AUTHOR

Barzia Tehrani

HISTORY

This module depends on the TC&DM Common Software.The TCS header files and binary libraries must be available at build time and at run time.

This module is not yet implemented....

APPENDIX N
UscPvl: Man page

NAME

UscPvl -- Parameter Value Language Parser

SYNOPSIS

 #include <Usc.h>

 int UscPvlLoadFile (char*);

 Boolean UscPvlInitialized (void);

 void UscPvlDelete (void);

 UscPvlGroup UscPvlGetFirstGroup (UscPvlGroup);

 UscPvlGroup UscPvlGetNextGroup (UscPvlGroup);

 UscPvlGroup UscPvlFindGroup (char*, UscPvlGroup);

 int UscPvlGroupCount (UscPvlGroup);

 UscPvlAssign UscPvlGetFirstAssign(UscPvlGroup);

 UscPvlAssign UscPvlGetNextAssign (UscPvlAssign);

 UscPvlAssign UscPvlFindAssign (char*, UscPvlGroup);

 int UscPvlAssignCount (UscPvlGroup);

 char* UscPvlGroupName (UscPvlGroup);

 char* UscPvlAssignName (UscPvlAssign);

 UscPvlValueTypeEnum UscPvlValueType (UscPvlAssign);

 char* UscPvlValueString (UscPvlAssign);

 double UscPvlValueDouble (UscPvlAssign);

 time_t UscPvlValueDateTime (UscPvlAssign);

MT-LEVEL

Unsafe. Only one thread should use UscPvl(3).

OVERVIEW

Parameter Value Language (PVL) is a format recommended by CCSDS 641.0-B-2, which provides a specific syntax for the association of values with parameters. A PVL Module is orginized whitin several groups of assignements embeded inside each other. Each assignement consists of a name and value, and can be standalone or aggregated into a group or object. Each group or object consists of a name and several members. Each member of a group or object can be an assignement, group, or another object.

Both SFOC libsss and TC&DM libPu provide powerfull tool to pars and validate PVL modules. The libPu is a powerfull and easy to use library to associate PVL parameters to application variable, and often is used for parsing application resource file. The downbeat of libPu is it's inability to handle group and object aggrigations. The libsss however does handle groups and object aggrigations, but using the library is not as easy as it seems like. The libsss parses a PVL module and export it into a tree of sss_pvl_entry. Each node in this tree is either an assignement, object, or group. The software application that uses libsss must browse through pvl tree, check for the type, find an assignement, check for the assignement format, and then convert the value from string to the format desired. The UscPvl(3) is meant to do all this for the application.

CONCEPT

UscPvl(3) introduces two handles UscPvlGroup and UscPvlAssign for pointing to groups and assignements respectively. These handles can be used to get the name of object/assignement, value of assignements, and the type of each assignement.

There are two way to get the group or assignement handles:

1) In order as a list link: UscPvlGetFirstGroup(), UscPvlGetFirstAssign(), UscPvlGetNextGroup(), UscPvlGetNextAssign()

2) By name: UscPvlFindGroup(), UscPvlFindAssign()

INITIALIZATION / DESTRUCTOR FUNCTIONS

UscPvl(3) defines the following initialization and destructor functions:

UscPvlLoadFile(filename);

This function loads and validates filename aginst PVL standard.

Precondition:

 filename != NULL

Arguments:

· filename is the null terminated string representing the path to PVL filename.

UscPvlInitialized()

Return TRUE if UscPvl(3) is initialized, and FALSE otherwise.

Precondition:

 none.

UscPvlDelete()

Deletes all memory allocated by UscPvl(3).

Precondition:

 UscPvl is not already deleted.

GROUP/OBJECT RELETED FUNCTIONS

UscPvlGetFirstGroup(group);

This function returns the handle for the first group or object aggrigated into group or standalone if group==NULL.

Precondition:

 group == NULL ||

 group is a valid handle

Arguments:

· group is a parent aggrigation group/object, or NULL if standalone

UscPvlGetNextGroup(group);

This function returns the handle for the next group or object positioned after group.

Precondition:

 group != NULL &&

 group is a valid handle.

UscPvlFindGroup(name, group);

This function finds the first group where group-name equals name and is aggrigated into group or standalone if group==NULL.

Precondition:

 name != NULL

 group == NULL || group is a valid handle

Arguments:

· name is a null terminated string representing the name of the group or object to be found.

· group is a parent aggrigation group/object, or NULL if standalone

UscPvlGroupCount(group);

This function returns the integer number of groups and objects aggrigated into a parent group or standalone if group==NULL.

Precondition:

 group == NULL || group is a valid handle

Arguments:

· group is a parent aggrigation group/object, or NULL if standalone

UscPvlGroupName(group);

This function returns the pointer to the null terminated string representing the name of the group.

Precondition:

 group != NULL && group is a valid handle

PVL ASSIGNEMENT RELATED FUNCTIONS

UscPvlGetFirstAssign(group);

This function returns the handle for the first assignement aggrigated into group or standalone if group==NULL.

Precondition:

 group == NULL ||

 group is a valid handle

Arguments:

· group is a parent aggrigation group/object, or NULL if standalone

UscPvlGetNextAssign(assign);

This function returns the handle for the next assignement positioned after assign.

Precondition:

 assign != NULL &&

 assign is a valid handle.

UscPvlFindAssign(name, group);

This function finds the first assignement where assign-name equals name and is aggrigated into group or standalone if group==NULL.

Precondition:

 name != NULL

 group == NULL || group is a valid handle

Arguments:

· name is a null terminated string representing the name of the assignement to be found.

· group is a parent aggrigation group/object, or NULL if standalone

UscPvlAssignCount(group);

This function returns the integer number of assignements aggrigated into a parent group or standalone if group==NULL.

Precondition:

 group == NULL || group is a valid handle

Arguments:

· group is a parent aggrigation group/object, or NULL if standalone

UscPvlAssignName(assign);

This function returns the pointer to the null terminated string representing the name of the assignement.

Precondition:

 assign != NULL && assign is a valid handle

UscPvlValueType(assign);

This function returns the type of assignement value in the form of UscPvlValueTypeEnum.

Precondition:

 assign != NULL && assign is a valid handle

UscPvlValueString(assign);

This function returns a pointer to the a null terminate string representing the value of the assignement.

Precondition:

 assign != NULL && assign is a valid handle

UscPvlValueDouble(assign);

This function returns the numeric value of assignement in double format, or -1 if type is not numeric.

Precondition:

 assign != NULL && assign is a valid handle

UscPvlValueDateTime(assign);

This function returns the data/time value of assignement in time_t format, or 0 if type is not Data/Time.

Precondition:

 assign != NULL && assign is a valid handle

SEE ALSO

PuParm(3), libsss(3), UscDevice(3), CuLog(3), CuCvt(3).

AUTHOR

Barzia Tehrani

HISTORY

This module depends on the TC&DM Common Software, and SFOC sss library. The TCS and SSS header files and binary libraries must be available at build time and at run time.

APPENDIX O
824-16 Rev. G - Requirement Compliance Matrix

APPENDIX P
MON-2 - Requirement Compliance Matrix

Task Module

Object 1

Object 2

Object 3

Object 4

Device Library (Real-Time database created from the site specific tables)

Update

Notify

Notify

Notify

Device Library: Update and Notification Mechanism

�CCN: UNASSIGN�CS operator removes USC from the link

CCN:ASSIGN�CS operator builds the link with UWV subsystem

Note: This include creating new link and/or adding USC into an existing link

Unassigned�State

OD: BOOT, or unexpected restart

ASSIGNED State

OD: CNF AUTO

Update the checkpoint

OD: PASS/SCN with number

Delete the checkpoint

OD:PASS 0 00

USC Sends and Event Message that auto-config is ignored, continuing previous track

No

Yes

USC load the support data file for the SCN in the checkpoint

USC configures UWV based on the support data file (ignore if no support data exist)

USC saves the new PASS and SCN to checkpoint

Are PASS and SCN same in both places? (Checkpoint and CE)

Connection Engine (CE)

USC �Hard drive

USC Reads checkpoint from USC hard drive�If (no checkpoint exist, PASS=SCN=0)

USC Subscribe to NMC connection monitor data (gets new PASS and SCN)

NMC/CS sends CCN ASSIGN to USC

NMC publishes Link monitor data to CE (this includes SCN and PASS)

During Track

During PRE-CAL

CCN: REASSIGN�CS operator reassigns UWV to the link �(Currently Not Supported by CS)

CS operator reassigns UWV to the link �(Currently Not Supported by CS)

3.2.6

Monitor and Control

3.2.6.1

General Requirements

0

3.2.6.1.0

The Microwave Configuration Control Group (CCG) shall provide the monitor and control function for the Microwave (UWV) subsystem and includes the following major assemblies: the Microwave Control Assembly (UCA) which includes all the hardware, the Microwave PLC Firmware (UPLC), and the Microwave Subsystem Control Software (USC). Unless otherwise specified, these requirements apply to all major assemblies in the CCG.

3

3.2.6.1.2

Included in each CCG shall be a smart controller with USC software at the SPC and controller hardware (UCA) with minimal intelligence at the antenna.

1

3.2.6.1.1

The Microwave Subsystems at the 70m, 34m HEF, 34m BWG and 34m HSB sites shall each include it’s own microwave configuration control group (CCG).

Yes

Yes

Yes

Ref.

Section

Requirements

Compliance

Design

Architectural Design

Architectural Design

Architectural Design

14

3.2.6.1.4

The USC functions fall into three areas: establish the subsystem configuration, monitor the subsystem elements, and displaying the configuration and certain monitor data.

4

3.2.6.1.5

The USC shall accept commands from NMC and configure the subsystem accordingly.

5

3.2.6.1.6

The configure requirements shall include setting up the test signal paths for calibrations, system performance tests (SPT) and maintenance.

6

3.2.6.1.7

The USC will control switching of the test signals into and through the LNA instrumentation and monitor the status of the LNAs.

7

3.2.6.1.8

All monitor and control interfaces, to both equipment and operators, shall be in accordance with the following documents. The latest versions applies unless otherwise stated in the task plan:

 820-19, MON-01, Monitor and Control Services Standard.

 820-19, MON-02, DSN Monitor and Control Services Practices.

 820-19, MON-03, Design Requirements for DSN User interfaces.

 820-19, MON-06, DSN Data Accountability Standards.

 820-19, MON-07, Uniform Display Services Standard.

2

3.2.6.1.3

The prime purpose of the USC shall be to provide control of, and visibility into the microwave configuration for the NMC operators.

Yes

Yes

Yes

Yes

Yes

Partial

Ref.

Section

Requirements

Compliance

Design

Architectural Design

Architectural Design

Architectural Design

USC_EX� Sup Object, CNF Object

USC_MC �Swt Object�Mon Object

See MON-2 Compliance Matrix

8

3.2.6.1.9

Messages to and from different antenna types shall be the same for the same or similar information.

USC Tables

8.1

3.2.6.1.10

The USC shall support MSPA, i.e. provide support for up to eight separate spacecraft simultaneously using multiple configuration tables with compatible configurations.

USC_EX�Cnf Object

8.2

3.2.6.1.11

In the event that MSPA support requires the USC to configure the UWV hardware to incompatible configurations for multiple spacecraft missions, the USC shall not execute the configuration commands.

USC_EX�Cnf Object

9

3.2.6.1.13

The USC shall provide the capability to automatically revert to the last state after a power interruption or power reset.

USC_EX�Cnf Object

Will always return to UNASSIGNED

10

3.2.6.1.14

The USC shall detect and report faults within the UWV subsystem.

USC_MC

Mon Object

11

3.2.6.1.15

The USC shall provide a means for a full reset to be triggered remotely by an operator at the SPC or by any external controller. The USC shall ensure the safety of equipment and personnel during this action.

USC_TM, �Only restart the software

12

3.2.6.1.16

After a reset, the USC shall be initialized and go to a state waiting for directives.

USC_EX, �Cnf Object

USC Waits for assign before directives

13

3.2.6.1.17

Operator’s manuals shall comply with the requirements of the “Preparation of Operator’s Manuals for DSN Subsystems”, document 813-110.

8.3

3.2.6.1.12

In the event of a MSPA support error, the USC shall send an error message to the NMC indicating incompatible mission requirements.

USC_EX�Cnf Object

13.1

3.2.6.1.18

The USC shall comply with the requirements of document 821-308, “TMOD Security Requirements.”

Yes

Yes

Yes

Yes

Partial

Yes

Partial

Partial

Yes

Yes

Ref.

Section

Requirements

Compliance

Task

3.2.6.2

Control Requirements

15

3.2.6.2.1

The CCG shall control all the UWV RF signal path hardware.

UscDevice Library, Tables

16

3.2.6.2.2

The USC shall be capable of controlling all the test signal routing switches.

UscDevice Library, Tables

17

3.2.6.2.3

Provisions shall be made to control up to 80 on/off items and up to 50 two-to-four-position devices.

UscDevice Library

18

3.2.6.2.4

The UWV shall be operable from any three locations: local at the antenna, remote at the maintenance terminal or by the NMC across the LAN.

USC_NI�USC_TERM

UMT

19

3.2.6.2.5

Operation from the remote location shall not preclude operation from the local location, but safeguards shall be made to prevent local operation during mission operations.

Hardware Key Switch,�No software safeguard can be provided

20

3.2.6.2.6

When control is at the local location, it shall be possible to lock out remote operation with a key switch.

Hardware Key Switch

21

3.2.6.2.7

Stand-alone operation shall be provided in both local and remote mode.

USC_DIAG,� USC_TERM

UMT

22

3.2.6.2.8

If the USC is in the maintenance mode, in local mode at the antenna or not ready, this status must be indicated to NMC.

USC_MC Mon Object�STS Display

23

3.2.6.2.9

Local control at the antenna shall not use or be dependent on the USC.

UMT

Yes

Yes

Yes

Yes

Partial

Yes

Yes

Yes

Yes

Ref.

Section

Requirements

Compliance

Task / Description

24

3.2.6.2.10

The design shall allow operators to develop and store their own configurations.

USC_EX�Usr Object

25

3.2.6.2.12

Software shall be written such that changes in the hardware configuration can be incorporated by changing table entries, rather than by rewriting the software program.

USC Tables

26

3.2.6.2.13

Stored configurations that set all devices into the desired configuration shall be the prime mode of operation.

USC_EX�Cnf Object

27

3.2.6.2.14

The design shall allow for control of individual devices.

USC_MC,�Swt Object

28

3.2.6.2.15

Space for up to 500 preset hardware configurations shall be provided which can be coded and stored in non-volatile memory under a unique name.

Drive Space

29

3.2.6.2.16

The space for hardware configuration presets shall be divided into the following classes: the NMC operator, the NSS, and local operation (maintenance and special off-line testing operations).

Directory Structure design

30

3.2.6.2.17

Software shall be designed to be common to all antennas, with tables to allow for the different configurations.

UscDevice Library

31

3.2.6.2.18

 Establishment of the desired configuration shall not require more than one operator directive (OD) from any user such as: NMC or local. This requirement does not limit the use of separate modification or update directives.

USC_EX�Cnf Object

24.1

3.2.6.2.11

The USC assumes no responsibilities for any operator generated configurations.

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Ref.

Section

Requirements

Compliance

Task / Description

3.2.6.3

Monitor Requirements

32

3.2.6.3.1

The USC shall continuously monitor the UWV hardware.

USC_MC�Hw Proxy

33

3.2.6.3.5

The USC shall monitor the status and position of each item that it controls and report any changes to the NMC.

USC_MC�Hw proxy, Mon Object

34

3.2.6.3.6

Updated configuration data shall be sent to the NMC with every configuration change and published on a regular basis.

USC_MC Mon Object,

USC_EX Sig Object

35

3.2.6.3.7

Provision shall be made to monitor up to a total of 100 masers and HEMTs per antenna.

UscDevice Library

36

3.2.6.3.8

Provision shall be made for monitoring of the interlocks and the status of each interlock shall be made available for display by the controller to aid in fault isolation.

USC_MC�Hw Proxy

37

3.2.6.3.9

All configuration commands, responses and statuses shall be logged and this log shall be maintained for at least 72 hours.

USC_EX Nmc Proxy�USC_MC Mon proxy

32.3

3.2.6.3.4

The USC shall identify failed items to the lowest replaceable element (LRE).

USC_MC�Hw Proxy, Min Object�The status of all All LRE items not available

32.1

3.2.6.3.2

The USC shall continuously evaluate the UWV hardware.

USC_MC�Hw proxy

32.2

3.2.6.3.3

The USC shall continuously report on the UWV hardware.

USC_MC�Mon Object

Yes

Yes

Yes

Partial

Yes

Yes

Yes

Yes

Yes

Ref.

Section

Requirements

Compliance

Task / Description

40

3.2.6.3.12

Event messages shall be sent within one second after an event occurred, notifying the NMC of all status and configuration changes.

All Tasks

41

3.2.6.3.13

If the NMC attempts control of the USC while the USC is in local control or in maintenance mode, the USC shall send a message to the NMC indicating that the USC is unavailable.

USC_EX�Nmc proxy

42

3.2.6.3.14

 A given event shall cause only a single message to be sent to the NMC.

General Design

38

3.2.6.3.10

All data logging shall be referenced to station time to an accuracy of +/-0.1 second of the actual time of the event and obtained from the NTP.

UscLog Library�Data accuracy id 0~1 second

39

3.2.6.3.11

The Monitor data shall include positive closed-loop control (i.e., acknowledgement) for all controls received, including the status of any control that is still being processed or has been interrupted.

Architectural Design

42.1

3.2.6.3.15

All notifications to the NMC shall be time tagged.

USC_EX Sig Object

USC_MC Mon Object

No

Yes

Yes

Yes

Yes

Partial

Ref.

Section

Requirements

Compliance

Task / Description

3.2.6.4

Display Requirements

43

3.2.6.4.1

The USC shall generate a display for the remote maintenance terminal and send display data to the UDS display at the NMC.

UDS Displays�All Monitor data items

44

3.2.6.4.2

The graphical displays shall present a picture of the UWV configuration to the NMC operator.

MAP display

45

3.2.6.4.3

The graphical displays shall show all switch positions and other hardware settings in their actual configuration.

All Displays

46

3.2.6.4.4

The displays shall include the configuration name.

All Displays

47

3.2.6.4.5

The display shall clearly indicate failed elements and shall be updated when conditions change.

All Displays

48

3.2.6.4.6

Displays shall show the actual position of switches, not the position that was commanded.

All Displays

Yes

Yes

Yes

Yes

Yes

Yes

Ref.

Section

Requirements

Compliance

Task / Description

3.2.6.5

Test Controller Capability (Delta) Requirements

50

3.2.6.5.1

The USC shall be able to function as a test controller, if required at a latter point in time.

Current design will support future upgrade

50.1

3.2.6.5.2

The test controller shall provide the capability to make measurements that require resources from other antenna subsystems The type of measurements could include system noise temperature, pointing models, tipping curves etc.

Current design will support future upgrade

51

3.2.6.5.4

Analog data shall be supported by the CCG and handled as digitized analog data by the USC.

Current design will support future upgrade

52

3.2.6.5.5

The USC shall be able to obtain digitized analog status and instrument output data from the LNA and other UWV assemblies.

Current design will support future upgrade

53

3.2.6.5.6

The USC shall be able to send configuration commands to the LNA and other UWV assemblies.

Current design will support future upgrade

50.2

3.2.6.5.3

The test controller shall be able to perform unattended measurements that would be under the control of the NMC.

Current design will support future upgrade

No

No

No

No

No

No

Ref.

Section

Requirements

Compliance

Task / Description

54

3.2.6.5.7

Through the Test Controller or NMC, as appropriate, the capability shall be provided to be able to start phases of tests at specific clock times.

Current design will support future upgrade

55

3.2.6.5.8

The Test Controller shall be able to receive the status or response for requests sent to other external subsystems.

Current design will support future upgrade

56

3.2.6.5.9

The Test Controller shall be able to exchange data with other external subsystems.

Current design will support future upgrade

57

3.2.6.5.10

The Test Controller shall provide a processing and logging capability for data requested from the LNA, CCG, UWV assemblies, BVR and ANT.

Current design will support future upgrade

58

3.2.6.5.11

Time tags shall be supplied by the FTS and applied to all logged data.

Current design will support future upgrade

59

3.2.6.5.12

For logged data, provisions shall be made for recording component serial numbers and other identifying data in header records.

Current design will support future upgrade

60

3.2.6.5.13

The USC shall, by an internal program and/or by a command script, be able to run special sequences involving the UWV hardware without the need for an operator.

Current design will support future upgrade

61

3.2.6.5.14

For tests requiring external resources, the tests shall be performed under NMC control by the use of scripts provided by the UWV. The control shall include sending appropriate commands to external subsystems, such as BVR and ANT, and retrieving required data.

Current design will support future upgrade

No

No

No

No

No

No

No

No

Ref.

Section

Requirements

Compliance

Task / Description

3.2.6.6

External Software Interfaces

62

3.2.6.6.1

The USC shall interface with NMC, DCC(DTT), and NSS subsystems.

By Design

3.2.6.7

Internal Software Interfaces

65

3.2.6.7.1

The USC and UCA shall define an internal interface between the CCG software and the hardware.

By Plan

3.2.6.8

External Hardware Interfaces

66

3.2.6.8.1

The CCG shall interface with the ANT, ETX, FAC/GCF, DLN, and FTS subsystems.

Existing H/W Design

Yes

Yes

Yes

Ref.

Section

Requirements

Compliance

Task / Description

2.1 Automation

1

Any subsystem modification (including additions, deletions, or modifications to monitor data, directives, displays, and events) that affects automation shall be coordinated with the Automation Analyst.

2.1

2

Subsystems shall test with NMC Automation following any subsystem changes.

AA-USC Interface Document

2.4 Self-Configuration

1

The subsystem shall wait indefinitely for the standard connection data to become available, i.e., the subsystem should not timeout.

USC_NI

2.4

2

If the subsystem cannot complete its configuration based upon available data, it shall issue an appropriate alarm notification to the NMC under its connection functional address.

USC_EX Cnf Object

USC_NI

2.4

3

The subsystem shall continue to accept and process directives appropriate for its state. For example, subsystem directive may be used to supply data needed to complete the subsystem’s configuration.

USC_EX NMC Proxy

2.4

4

A subsystem shall always accept an Unassign CCN from the NMC.

USC_NI

USC_EX NMC Proxy

2.5 Self-Evaluation

1

Subsystems shall evaluate their performance and report deviations to the NMC. For example, a subsystem may determine a performance deviation by comparing actual performance data against subsystem ‘Standards and Limits’ or by comparing the delta of actual vs. predicted calculations against subsystem “Standards and Limits.”

USC_EX Sts Object

2.5

2

The results of these comparisons shall be made immediately available to operations personnel through event notifications and/or monitor data.

USC_EX Sts Object

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes�

Yes

Yes

Yes

Yes

Yes

Yes

Yes

2.5

3

Subsystems shall monitor their output of all products, and alert operations personnel when the required outputs are either impaired or nonexistent.

USC_MC Mon Object

2.6 Remote Restart

1

The specific mechanism to be used by the NMC to reset a subsystem controller shall be defined in the NMC-subsystem interface agreement.

NMC-USC Interface Document

2.7 Standard Deployment and Software Version

1

Subsystem files, particularly those used by the NMC, shall be identified with specific software versions.

3.1 Subsystem Types and Functional Addresses

1

A connection-assignable subsystem controller shall have either a connection functional address or an antenna group functional address and a permanent functional address.

Antenna Functional Address = from CCN

Permanent Functional Address = /fa/<domain>/usc<mm>

3.1

2

A multi-connection subsystem controller shall be capable of having multiple connection functional addresses and a permanent functional address.

USC single connection assignable subsystem

3.1

3

Non-assignable subsystem controllers shall only have permanent functional addresses.

USC single connection assignable subsystem

3.2.1.1 Unassigned

1

A well-behaved subsystem shall place itself into the unassigned mode following bootup or reset.

USC_NI

3.2.1.1

2

An connection-assignable subsystem in the unassigned mode shall register under its permanent functional address to receive CCNs.

USC_NI

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

N/A

N/A

Yes

Yes

3.2.1.1

3

While in an unassigned mode, an assignable subsystem shall use its permanent functional address for all external communications.

USC_NI

3.2.1.2

1

An assignable subsystem in the assigned mode shall use the functional address supplied in the CCN as its source address in subsequent connection-related communications.

USC_NI

3.2.2 Multi-Connection Subsystems

1

The interface agreements between the NMC and a multi-connection subsystems shall define the specific assignment protocol for these subsystems.

USC single connection assignable subsystem

3.2.3 Non-Assignable subsystems

1

A non-assignable subsystem shall ensure that its permanent functional address is published in accordance with DFL-1-7.

USC single connection assignable subsystem

3.2.3

2

The subsystem shall assume an assigned communications mode following a subsystem reset/restart, such subsystem will not receive CCNs.

USC single connection assignable subsystem

3.3.3 Assigned to Assigned

1

A subsystem shall not allow a change to the connection number while in assign mode.

USC_NI

3.4 Subsystem-Provided Information

1

Subsystems shall provide the following information in their interface agreement with the NMC:

USC_EX NMC Proxy

3.4

2

identification of subsystem type with respect to assignability (multi-connection, non-assignable or connection assignable).

NMC-USC Interface Agreement

USC-DCC Interface Agreement

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

N/A

N/A

N/A

Yes

Yes

Yes

4.2.1 Protocol and Content

1

Directives that control status or configuration parameters shall be associated with the monitor data reflecting the requested changes.

USC_MC Mon Object�USC_EX Sig Object

4.2.1

2

Subsystems shall use an estimated-time-to-complete criterion in determining what response category to use when issuing the first response to a directive. (The estimated completion times are intended to be pre-execution estimates of the completion time of the process invoked by the directive.)

USC_EX NMC Proxy

 4.2.2 Directive Response Categories and Criteria for Use

1

If a subsystem can execute a directive within one second of receiving it, then the subsystem shall send a Completed response after executing the directive.

USC_EX NMC Proxy

4.2.2

2

If the subsystem can expect to execute the directive within one to five seconds after receiving it, and if during this time it can receive additional directives, the subsystem shall send a Processing response within one second of receiving the directive.

USC_EX NMC Proxy

4.2.2

3

Upon receiving a Processing response, the NMC may send a new directive immediately to begin another exchange. This second directive shall be processed concurrently.

USC_EX NMC Proxy

4.2.2

4

Directives that control status or configuration parameters shall be associated with the monitor data reflecting the requested changes.

USC_EX NMC Proxy

4.2.2

5

Processing of current exchanges shall follow the protocol standards independently.

USC_NI

4.2.2

6

The subsystem shall send a second response within a total of five seconds from the time it received the original directive. This second response could also be another Processing response.

USC_EX NMC Proxy

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

4.2.2

7

The subsystem shall continue to send responses until either a Rejected response or a Completed response is sent.

USC_EX NMC Proxy

4.2.2

8

If, while executing a directive, the subsystem is unable to receive a second directive, the Processing/Wait response shall be sent within one second of receiving the first directive.

USC_EX NMC Proxy

4.2.2

9

Within 15 seconds of receiving a second directive, the subsystem shall send a second directive response. This second response could also be another Processing/Wait response.

USC_EXUSC_EX NMC Proxy

4.2.2

10

The subsystem shall continue to send responses until either a Rejected response or a Completed response is sent.

USC_EX NMC Proxy

4.2.2

11

If the subsystem takes more than five seconds to execute the directive (and the Wait condition does not apply), the Started response shall be sent to the NMC within one second of receiving the directive.

USC_EX NMC Proxy

4.2.2

12

After executing the directive, the subsystem shall send a Completion Advisory to the NMC.

USC_EX NMC Proxy

4.2.2

13

The subsystem shall send Progress Advisories to the NMC while the subsystem executes the directive.

USC_EX NMC Proxy

4.2.2

14

In cases where the directive is not executed successfully, the subsystem shall send a Deviation Advisory or a Warning Alarm.

USC_EX NMC Proxy

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

4.2.2

15

If the subsystem cannot accept a directive, the Rejected response message shall be sent to the NMC and clearly state the reason for rejecting the directive (e.g., syntax, semantics, parameter validity check, etc.).

USC_EX NMC Proxy

4.2.2

16

The subsystem shall send the Rejected response message within one second of receiving the directive; the one second applies when Rejected is the first directive response in a directive/response exchange.

USC_EX NMC Proxy

4.2.3 Timing Considerations

1

Limits of one second, five seconds, or fifteen seconds thereafter shall be satisfied when the subsystem transmits an appropriate directive response.

USC_EX NMC Proxy

4.2.3

2

Subsystem designs shall accommodate a directive response time limit as follows:

In the absence of any other I/O activity to or from the LAN(s), the response time limit is met.

4.2.3

3

Subsystem designs shall accommodate a directive response time limit as follows:

During normal I/O activity, no more than 5% of the responses are transmitted later than the nominal response time limit.

Performance test.

USC_EX NMC Proxy

4.2.3

4

Subsystem designs shall accommodate a directive response time limit as follows:�The absolute maximum response time limits associated with each of the nominal response time limits (1, 5 and 15 seconds) are 3, 8, and 18 seconds.� Regardless of LAN I/O activity (but assuming that all acknowledged transmissions are successful on first attempt), the response is transmitted within these absolute maximum response time limits.

USC_NI

USC_EX NMC Proxy

4.3 Subsystem-Provided Information

1

In cases where closed-loop control relationships exist (i.e., a directive is associated with monitor data or specific events), such relationships shall be identified in the NMC–subsystem interface agreement.

NMC-USC Interface Agreement

4.3.1 NMC Directives List File

1

Using MDDS, a subsystem CDE shall provide the information listed in Table 4-1 for each subsystem directive.

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

Yes

Yes

Yes

4.3.1

2

Using MDDS, a subsystem CDE shall identify the applicable program ID and version of the software associated with the directives.

5.2.1.1 Alarms

1

Subsystems shall report, via an alarm, a subsystem anomaly for which the operator is expected to take some corrective action.

All Tasks

 5.2.1.1

2

Subsystems shall report, via an alarm, a subsystem anomaly for which the operator is expected to be aware that some corrective action is being carried out automatically.

There is no emergency alarm

H/W will handle critical personnel danger with H/W interlocks

5.2.1.1

3

Subsystems shall issue the same alarm only once.

All tasks

5.2.1.1.1 Emergency Alarm

1

Subsystems shall issue an emergency alarm to report any condition that could result in immediate danger to personnel, major equipment, or station facilities.

There is no emergency alarm

H/W will handle critical personnel danger with H/W interlocks

 5.2.1.1.1

2

Subsystems shall issue an emergency alarm to report an event that could result in costly repairs or excessive restoration time, if not addressed.

�USC_MC Mon Object

5.2.1.1.2 Critical Alarm

1

Subsystems shall issue a critical alarm to report any problem that, if uncorrected, will interrupt one or more data streams or otherwise jeopardize mission support.

USC_MC Mon Object

5.2.1.1.3 Warning Alarm

1

Subsystems shall issue a warning alarm to report any problem that is not critical but requires operator action to correct.

USC_MC Mon Object �

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

N/A

Yes

N/A

Yes

Yes

Yes

5.2.1.1.3

2

Subsystems shall issue a warning alarm if the subsystem observes a series of minor malfunctions foreshadowing a condition that would result in significant loss of data.

USC Events

5.2.1.2 Advisories

1

Subsystems shall report minor malfunctions, changes in status, routine progress, etc., by issuing advisories. Operators need not act upon an advisory.

USC Events

5.2.1.2

2

Subsystems shall issue the same advisory only once.

USC Events

5.2.1.2.1 Deviation Advisory

1

Subsystems shall issue a deviation advisory to report any anomalous condition that, by itself, requires no action by the operator.

USC Events

5.2.1.2.1

2

Subsystems shall issue an information advisory when a deviation in performance or a transient is observed.

USC Events

5.2.1.2.2 Completion Advisory

1

Subsystems shall issue a completion advisory to report the completion of some expected (and therefore non-anomalous) event.

USC Events

5.2.1.2.3 Progress Advisory

1

Subsystems shall issue a progress advisory to report an ongoing, routine (i.e., non-anomalous) activity.

USC Events

5.2.1.2.3

2

Subsystems shall issue progress advisories that clearly indicate whether the action is actually in process or merely in a queue.

USC Events

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

5.2.1.2.3

3

Subsystems shall issue progress advisories that should include completion times (e.g., seconds remaining), when the completion time is accurate and readily available.

Switch timing is fast.

5.2.1.2.4 Log-Only Advisory

1

Subsystems shall issue a log-only advisory to report performance information which is not necessarily needed at the time it is reported, but needs to be available for review at a later time.

USC Events

 5.2.1.2.5 Recovered Advisory

1

Subsystems shall issue a recovered advisory to inform the operator when the condition triggering an alarm no longer exists.

Not Supported by NMC

5.2.1.3 Prompts

1

Subsystems shall issue a prompt to gain the operator’s attention to inform the operator of a condition that either requires or permits some procedural step.

USC Events

5.2.3 Interface Agreement Negotiations

1

In the cases where closed-loop control relationships exist (i.e., an event is associated with monitor data, or a particular directive or display), such relationships shall be identified in the NMC–subsystem interface agreement.

5.2.4 Destination of Subsystem Events

1

Connection assignable subsystems shall send events to the NMC GCE permanent functional address /fa/<domain>/gce when unassigned, and to the NMC Connection Engine (CE) functional address provided in the configuration control notification (CCN) when assigned.

USC_NI

5.2.4

2

Non-Assignable subsystems shall send events only to the NMC GCE permanent functional address.

USC single connection assignable subsystem

6.2.1 Monitor Data Classifications

1

Subsystem controllers shall produce monitor data describing the subsystem’s status, configuration, and performance.

USC_EX NMC Proxy, and Sts proxy

Section

Req.�No.

Requirement Text

Task / Description

Compliance

N/A

Yes

No

Yes

Yes

Yes

NA

Yes

6.2.3 Monitor Data Formats

1

Monitor data parameters that report status information shall be expressed using the FORMAT_STATUS data format.

Mon Data Definition

6.2.3

2

Monitor data parameters that report configuration information shall be reported as ASCII strings, using the FORMAT_STRING data format, with the exception of configuration parameters that contain numeric information.

Mon Data Definition

6.2.3

3

Configuration information shall be encoded so that meaningful human interpretation does not require conversion by the NMC.

Mon Data Definition

6.2.3

4

Monitor data parameters that report performance information as numeric values shall use any of the standard numeric data formats.

Mon Data Definition

6.2.4 Design of Monitor Data

1

Monitor data of a subsystem shall be designed such that the overall subsystem status can be described by a single monitor data item.

Mon Data Definition

6.2.4

2

Monitor data of a subsystem shall be designed such that visibility into a subsystem can be achieved by successive and ordered views which are increasingly detailed.

Mon Data Definition

6.2.4

3

Monitor data of a subsystem shall be designed such that status, configuration, and performance monitor data shall be provided to the extent necessary to describe the health and state of a component.

Mon Data Definition

6.2.4

4

Monitor data of a subsystem shall be designed such that closed-loop control can be accomplished via monitor data. For example, when a directive is issued to a subsystem, the ‘result’ of this directive (or failure to achieve the result) should be reflected in monitor data.

Mon Data Definition

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

6.2.4

5

Closed-loop relationships between directives and monitor data shall be described in the “Description” of the monitor data.

6.2.4

6

Monitor data of a subsystem shall be designed such that critical subsystem information is produced as monitor data.

USC_MC Mon Object

6.2.5 Subsystem State

1

Subsystems shall accurately report (via monitor data) their current status and state at all times.

USC_EX Sts Object

USC_MC Mon Object

6.2.5

2

All subsystem status or state changes shall result in the publishing of the associated monitor data by the subsystem.

USC_EX Sig, and Sts Objects

USC_MC Mon Object�

6.2.5

3

When uncertain as to the status of the subsystem component, the more critical status value shall be reported.

USC_EX Sts Object�

6.2.6 Program/Version ID Standard

1

The following standard shall be adhered to when publishing program IDs:

The program ID – specifically the PGMID monitor data item – is the program identification number provided by SPMC (e.g., DOA‑5556‑OP).

UWV-6154-OP

6.2.6

2

The following standard shall be adhered to when publishing version IDs:

The version ID – specifically the VersionID monitor data item – is a concatenation of the operational revision identifier and the delivered program version numbers (e.g., BV3.0.7 or EV10.14.2.).

Version Number = AV1.0.0

USC_EX NMC Proxy

USC_NI

UDS

6.3.1.1 MDS Monitor Data Specification File

1

Using MDDS, a subsystem CDE shall identify each data item to be published by the subsystem and the format of the data item.

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

6.3.1.1

2

Using MDDS, a subsystem CDE shall provide the applicable program ID and version.

6.3.1.2 Interface Agreements

1

All subsystem monitor data subscribed to by the NMC and the functional address(s) under which this data is published shall be defined in an interface agreement between the subsystem and the NMC.

6.3.1.2

2

The monitor data descriptions in the interface agreement shall consist of the following information:

data item identifier (name). (All data items published under the same functional address must have unique names.)

item description

brief description of the data item.

 identification of any positive closed-loop control relationship(s) (e.g., between the monitor data item and subsystem directives or events).

 identification of any relationship(s) to predicts and/or standards and limits, in the case of performance data.

(3)	 format.

(4)	 units/precision.

(5)	 range of values.

6.3.1.2

3

Interface agreements with the NMC shall identify all subsystem assemblies and provide the required monitor data for each assembly.

6.3.2 Subsystem/ Assembly Standard Monitor Data

1

Connection assignable and antenna group subsystems shall publish the monitor data defined in Tables 6-1 and 6-2, as appropriate, under the permanent functional addresses shown ion Table 6‑3, independent of the assigned mode of the subsystem.

USC_EX NMC proxy

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

Yes

6.3.2

2

Connection assignable and antenna group subsystems while in assigned mode shall also publish the monitor data defined in Tables 6-1 and 6-2, as appropriate, under the functional addresses provided in the assigned CCN.

USC_EX NMC proxy

6.3.2

3

A non-assignable subsystem shall publish the monitor data described in Tables 6-1 and 6-2, as appropriate, under the permanent functional addresses defined in Table 6-3.

USC single connection assignable subsystem

7.2.1 Types of Subsystem Displays

1

Subsystem displays shall adhere to the MON-3 standard.

UDS Displays

7.2.2 User Interface Standards

1

Subsystem displays shall be associated with an identifier that is unique among displays for that particular subsystem. (MON-3 contains a list of standard names for standard subsystem displays.)

UDS Displays

7.3.1 NMC Display Data File

1

Using MDDS, a subsystem CDE shall provide the information listed in Table 7-1 for each subsystem display.

7.3.1

2

Using MDDS, a subsystem CDE shall identify the applicable program ID and version of the software associated with the display list.

8.2.1 Support Data Processing

1

A MON-2 subsystem shall receive support data files from the SPPA in a predefined input directory on a predefined host.

UscScTable Library

USC Solaris Configuration for FTP accounts

8.2.1

2

All MON-2 subsystems shall automatically process support data files stored in their ‘input’ directory by the SPPA.

USC_EX Sup Object

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

N/A

Yes

Yes

Yes

Yes

Yes

Yes

8.2.1

3

This automatic processing shall include parsing of the file name, verification of the file contents and format, storage of the file in the appropriate ‘user’ directory(s), the handling of error conditions, and the periodic purging of the support files from both the subsytem ‘input’ and ‘user’ directories.

UscScTable Library

USC_EX Sup Object

8.2.1

4

MON-2 subsystems shall automatically verify support data files to the extent possible upon their arrival at the subsystem.

UscScTable Library

USC_EX Sup Object

8.2.1

5

MON-2 subsystems shall verify that the file is readable and is complete, i.e., that the last line of the file is ‘*=END=*’.

UscScTable Library

8.2.1

6

If an error is found during file verification, a MON-2 subsystem shall send a warning alarm event message to the NMC and delete the file from the subsystem ‘input’ directory.

UscScTable Library

USC_EX Sup Object

8.2.1

7

If a required support data file is unavailable at connection configuration or if there is an ambiguity in which file to use (e.g., more that one version of a file is available), a MON-2 subsystem shall issue a critical alarm event message to the NMC.

USC_EX Cnf Object

8.2.1

8

MON-2 subsystems shall provide subsystem directives which allow an operator to manually identify/overwrite the specific support date file to be used by the subsystem.

USC_EX Cnf Object

8.2.1

9

MON-2 subsystems shall periodically purge support data files from their ‘input’ and ‘user’ directories based upon purge dates provided in each file’s file name.

USC_TM

9.2.3 Printer Selection and Control

1

Printers, including a label printer, are available at each DSCC. Unix remote printer commands shall be used by the subsystem software to select and control where and how hardcopy reports will be output.

No printer is needed

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

Yes

Yes

Yes

N/A

10.2.1 General

1

Interface agreements shall match as-built software.

10.2.1

2

Interface agreements shall not list monitor data in the interface agreements if the data are not actually published.

10.2.1

3

Interface agreements shall be identified with a specific program ID

10.2.2 Functional Addresses

1

The interface agreement shall identify all functional address(s) and permanent functional addresses by which the subsystem will be identified, and under what conditions each will be used.

10.2.3 Assignment

1

Subsystems shall provide the following information in their interface agreement with the NMC:�Identification of the subsystem’s assignment type, i.e., connection assignable, multi-connection or non-assignable subsystem.

10.2.3

2

Subsystems shall provide the following information in their interface agreement with the NMC:�how swaps and reboots are to be performed for the subsystem.

10.2.4 Directives/ Responses

1

For cases where a positive closed-loop control relationship exists (i.e., specific monitor data can be used to verify the successful execution of a directive), such relationships shall be identified in the NMC–subsystem interface agreement.

10.2.4

2

Subsystem directives utilized by NMC automation shall be identified in the subsystem interface agreement with the Automation Analyst.

AA-USC Interface Document

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

10.2.5Event Notification

1

For cases where a positive closed-loop control relationship exist (i.e., an event is associated with monitor data, or a particular directive or display), such relationships shall be identified in the NMC–subsystem interface agreement.

10.2.5

2

Subsystem events utilized by NMC automation shall be identified in the subsystem interface agreement with the DSN Automation Analyst.

AA-USC Interface Document

10.2.6 Monitor Data

1

All subsystem monitor data published by an assembly and subscribed to by the NMC shall be defined in an interface agreement between the subsystem and the NMC.

10.2.6

2

The monitor data descriptions in the interface agreement shall consist of the following information:

10.2.7 Subsystem Displays

1

Displays utilized by NMC automation shall be identified in the subsystem interface agreement with the Automation Analyst.

AA-USC Interface Document

11.2 Integration Testing with the NMC

1

Subsystems shall specifically perform integration tests with the NMC and with NMC Automation for each subsystem re-delivery.

11.2

2

Subsystems shall demonstrate that subsystem test procedures address compliance with the “shall” statements in this document.

12.2 NMC-Required Data Definition Files

1

All subsystem CDEs (legacy and MON-2)shall use the MDDS to produce the subsystem’s Data Definition files.

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

12.2

2

The subsystem Data Definition files are subsystem-version sensitive and shall be re-delivered with each new version of subsystem software.

B.2.2 Time

1

The Time format (12 bytes) can be used to represent a time measurement to a resolution of one millisecond. Time shall be expressed as a string of 12 ASCII digits containing the following information:�Day of Year: 3 bytes, Min Value 001, Max Value 366�Hour: 2 bytes, Min Value 00, Max Value 23�Minute: 2 bytes, Min Value 00, Max Value 59�Second: 2 bytes, Min Value 00, Max Value 60�Millisecond: 3 bytes, Min Value 000, Max Value 999

B.2.2

2

Each item shall be expressed with leading zeros and is arranged in six 16-bit words.

B.2.3 Parameter Descriptor Word (PDW)

1

The validity field shall be coded as follows:�0 = The parameter has been observed; the value may be used. �1 = The parameter has not been observed, or the parameter is not applicable to this mode of operation; the value should be disregarded.

B.2.3

2

For status and configuration parameters, the PDW analysis field is not defined, and shall be coded as zero.

No Analog Data

B.2.3

3

For performance parameters, the analysis codes shall be used and their meanings are as follows:�0 = The subsystem has not analyzed the parameter; disregard this field.�1 = The parameter has a normal, reasonable, or expected value.�2 = High warning limit has been exceeded.�3 = High critical limit has been exceeded.�4 = Low warning limit has been exceeded.�5 = Low critical limit has been exceeded.

No Analog Data

B.2.5 Double Integer

1

The Double Integer format (32 bits) can be used to express integral quantities in the range –2,147,483,648 to +2,147,483,647 with a resolution of unity. Double integers shall be expressed in a signed two’s complement notation (MSB in the first word).

No Analog Data

Section

Req.�No.

Requirement Text

Task / Description

Compliance

Yes

Yes

Yes

Yes

N/A

N/A

N/A

B.2.6 Floating Point

1

The Floating Point format (32 bits) can be used to express quantities in the approximate range +2255 (about +1076) with a precision of 22 bits (over six significant decimal digits). Floating point numbers shall be expressed with a sign, a nine-bit exponent, and a 22-bit mantissa.

No Analog Data

B.2.7 Double Floating Point

1

The Double Floating Point format (48 bits) can be used to express quantities in the approximate range +2255 (about +1076) with a precision of 38 bits (over ten significant decimal digits). Double floating point numbers shall be expressed with a sign, a nine-bit exponent, and a 22-bit mantissa.

No Analog Data

B.2.10 ASCII Floating Point

1

An ASCII floating point format (12 bytes) can be used to express quantities in the range +1099 with a precision of seven decimal digits. The quantity shall be represented as a 12-character string in the following format:

+0.000000+00

B.2.12 Unformatted

1

Unformatted messages shall be used to report anything that cannot be expressed in any of the other formats.

B.2.12

2

The individual interface agreements shall explain how any unformatted messages are to be constructed and interpreted.

C.2 NMC Translator

1

DFL-1-2/890-132 subsystems shall ensure that the program/versionID transmitted (in Segment 1) actually corresponds to the software version producing the information.

USC is not a DFL-1-2/890-132 subsystem

C.6 Monitor Data

1

If a DFL-1-2/890-132 subsystem expects to poll for monitor data published by a MON-2 subsystem, the MON-2 subsystem shall ensure that the data are published under the functional address expected by the DFL-1-2/890-132 subsystem.

USC is not a DFL-1-2/890-132 subsystem

C.7 Subsystem Displays

1

CDEs of DFL-1-2/890-132 subsystems shall provide the NMC Directives List File information via the on-line MDDS.

USC is not a DFL-1-2/890-132 subsystem

Section

Req.�No.

Requirement Text

Task / Description

Compliance

N/A

N/A

N/A

Yes

Yes

N/A

N/A

N/A

2

CDEs of DFL-1-2/890-132 subsystems shall provide the MDS Monitor Data Definition information via the on-line MDDS.

N/A

USC is not a DFL-1-2/890-132 subsystem

3

_1092580650

_1093782478

_1093782607

_1092580652

_1092580655

_1092580646

_1092580648

_1092580645

